二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C(0,-3)與x軸正半軸相交于點(diǎn)B,且OB=OC.
①求B點(diǎn)坐標(biāo);
②求函數(shù)的解析式及最小值;
③寫(xiě)出y隨x的增大而減小的自變量x的取值范圍.

【答案】分析:①根據(jù)線段OB的長(zhǎng)度寫(xiě)出坐標(biāo)即可;
②把點(diǎn)B、C的坐標(biāo)代入二次函數(shù)解析式,解方程即可求出b、c的值,從而得到函數(shù)解析式,把函數(shù)解析式整理成頂點(diǎn)式形式便不難得到最小值;
③根據(jù)頂點(diǎn)式解析式,結(jié)合二次函數(shù)的增減性解答.
解答:解:①∵點(diǎn)C(0,-3),OB=OC,
∴OB=3,
∴點(diǎn)B的坐標(biāo)為:B(3,0);

②根據(jù)題意得,,
解得,
∴函數(shù)的解析式為y=x2-2x-3,
即y=(x-1)2-4,
∴函數(shù)最小值是-4;

③當(dāng)x<1時(shí),y隨x的增大而減。
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的最值問(wèn)題,以及二次函數(shù)的增減性,求出點(diǎn)B的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•槐蔭區(qū)一模)已知二次函數(shù)y=x2-2x-3,當(dāng)自變量x取兩個(gè)不同的值x1、x2時(shí)函數(shù)值相等,則當(dāng)自變量x取
x1+x22
時(shí)的函數(shù)值與x=
1
1
時(shí)的函數(shù)值相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=x2+x-2的圖象與x軸交點(diǎn)的橫坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•沛縣一模)在二次函數(shù)y=-x2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x -3 -2 -1 1 2 3 4 5 6
y -14 -7 -2 2 m n -7 -14 -23
則m、n的大小關(guān)系為 m
n.(填“<”,“=”或“>”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寶山區(qū)一模)二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C
(1)求m的值和點(diǎn)B的坐標(biāo)
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2-2x+a的圖象與x軸有且只有一個(gè)公共點(diǎn).則二次函數(shù)y=-x2-2x+a圖象的頂點(diǎn)坐標(biāo)為
(-1,0)
(-1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案