已知直線AB、CD、EF相交于點(diǎn)O,∠1:∠3=3:1,∠2=20°,求∠DOE的度數(shù).

解:∵∠1:∠3=3:1,
∴設(shè)∠1=3k,∠3=k,
則3k+20°+k=180°,
解得k=40°,
∴∠1=3k=120°,
∴∠COF=∠1+∠2=120°+20°=140°,
∠DOE=∠COF=140°.
故答案為:140°.
分析:根據(jù)∠1:∠3=3:1設(shè)出∠1與∠3,再根據(jù)∠1、∠2、∠3的和等于180°列式求出∠1的度數(shù),然后再求出∠1與∠2的和,再根據(jù)對(duì)頂角相等求解即可.
點(diǎn)評(píng):本題考查了對(duì)頂角相等的性質(zhì),平角等于180°,根據(jù)比例式設(shè)出∠1與∠3是并求出∠1的度數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點(diǎn),∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,已知直線AB與CD相交于O,EO⊥CD,垂足為O,則圖中∠AOE和∠DOB的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖所示,已知直線AB,CD被直線EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP.為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB,CD,EF相交于點(diǎn)O,若∠AOC=50°,則∠COB的度數(shù)等于
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB和CD相交于O點(diǎn),∠COE=90°,OF平分∠AOE,∠COF=34°,求∠AOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案