(1)證明:∵四邊形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC。∴∠ABF+∠CBF=90°。
∵AE⊥BF,∴∠ABF+∠BAE=90°!唷螧AE=∠CBF。
在△ABE和△BCF中,∵∠ABE=∠BCF,AB=BC,∠BAE=∠CBF,
∴△ABE≌△BCF(ASA)。
(2)解:∵正方形面積為3,∴AB=
。
在△BGE與△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE。
∴
。
又∵BE=1,∴AE
2=AB
2+BE
2=3+1=4。
∴
。
(3)解:沒有變化。理由如下:
∵AB=
,BE=1,∴
!唷螧AE=30°。
∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′= AE′,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,
∴∠DAE′=∠B′AE′=∠BAE=30°。
∴AB′與AE在同一直線上,即BF與AB′的交點是G。
設BF與AE′的交點為H,
則∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG= AG,∴△BAG≌△HAG。
∴
。
∴△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積沒有變化。
(1)由四邊形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可證得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF。
(2)由正方形ABCD的面積等于3,即可求得此正方形的邊長,由在△BGE與△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可證得△BGE∽△ABE,由相似三角形的面積比等于相似比的平方,即可求得答案。
(3)由正切函數(shù),求得∠BAE=30°,易證得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′與AE在同一直線上,即BF與AB′的交點是G,然后設BF與AE′的交點為H,可證得△BAG≌△HAG,從而證得結(jié)論