如圖,AB∥CD,∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,則α=   
【答案】分析:過點(diǎn)P作一條直線平行于AB,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得:∠APC=∠BAP+∠PCD,得到關(guān)于α的方程,解即可.
解答:解:過點(diǎn)P作PM∥AB,
∴AB∥PM∥CD,
∴∠BAP=∠APM,∠DCP=∠MPC,
∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,
∴45°+α=(60°-α)+(30°-α),
解得α=15°.
故答案為:15°.
點(diǎn)評:考查了一元一次方程的應(yīng)用,注意此類題要常作的輔助線,充分運(yùn)用平行線的性質(zhì)探求角之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中點(diǎn).求證:CE⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,AD與BC相交于點(diǎn)E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,AB∥CD,∠C=80°,∠CAD=60°,則∠BAD的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、如圖,AB∥CD,P是BC上的一個(gè)動(dòng)點(diǎn),設(shè)∠CDP=∠1,∠CPD=∠2,請你猜想出∠1、∠2與∠B之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD,∠1=58°,則∠2的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案