作業(yè)寶已知,如圖,?ABCD的對角線AC、BD相交于點O,過O的直線EF分別于邊AB、DC相交于點E、F.
求證:OE=OF.

證明:∵四邊形ABCD是平行四邊形,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,
在△DFO和△BEO中,

∴△DFO≌△BEO(ASA),
∴OE=OF.
分析:根據(jù)平行四邊形的性質(zhì)得出OD=OB,DC∥AB,推出∠FDO=∠EBO,證出△DFO≌△BEO即可.
點評:本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是推出△DFO≌△BEO.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案