【題目】方程(m﹣2)x2+3mx+1=0是關(guān)于x的一元二次方程,則( )
A.m≠±2
B.m=2
C.m=﹣2
D.m≠2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對角線BD、AC交于點(diǎn)O.將直線AC繞點(diǎn)O順時針旋轉(zhuǎn)分別交BC、AD于點(diǎn)E、F.
(1)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(2)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,求出此時AC繞點(diǎn)O順時針旋轉(zhuǎn)的角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a <-1,則方程x2+(1-2a)x+a2=0根的情況是
A. 有兩個不相等的實(shí)數(shù)根 B. 有兩個相等的實(shí)根
C. 沒有實(shí)數(shù)根 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形 ABCD中,AB=10cm,BC=8cm.點(diǎn)P從A出發(fā),沿A→B→C→D路線運(yùn)動,到D停止;點(diǎn)Q從D出發(fā),沿 D→C→B→A路線運(yùn)動,到A停止.若點(diǎn)P、點(diǎn)Q同時出發(fā),點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒2cm,a秒時點(diǎn)P、點(diǎn)Q同時改變速度,點(diǎn)P的速度變?yōu)槊棵隻cm,點(diǎn)Q的速度變?yōu)槊棵雂cm.圖②是點(diǎn)P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖③是點(diǎn)Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.
(1)、參照圖象,求b、圖②中c及d的值;
(2)、連接PQ,當(dāng)PQ平分矩形ABCD的面積時,運(yùn)動時間x的值為 ;
(3)、當(dāng)兩點(diǎn)改變速度后,設(shè)點(diǎn)P、Q在運(yùn)動線路上相距的路程為y(cm),求y(cm)與運(yùn)動時間x(秒)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(4)、若點(diǎn)P、點(diǎn)Q在運(yùn)動路線上相距的路程為25cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下問題,不適合用全面調(diào)查的是( )
A. 旅客上飛機(jī)前的安檢 B. 學(xué)校招聘教師,對應(yīng)聘人員的面試
C. 了解全校學(xué)生的課外讀書時間 D. 了解全國中學(xué)生的用眼衛(wèi)生情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要得到y=(x-3)2-2的圖象,只要將y=x2的圖象
A. 由向左平移3個單位,再向上平移2個單位;
B. 由向右平移3個單位,再向下平移2個單位;
C. 由向右平移3個單位,再向上平移2個單位;
D. 由向左平移3個單位,再向下平移2個單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在郴州市中小學(xué)“創(chuàng)園林城市,創(chuàng)衛(wèi)生城市,創(chuàng)文明城市”演講比賽中,5位評委給靚靚同學(xué)的評分如下:9.0,9.2,9.2,9.1,9.5,則這5個數(shù)據(jù)的平均數(shù)和眾數(shù)分別是( )
A. 9.1,9.2 B. 9.2,9.2 C. 9.2,9.3 D. 9.3,9.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,與AC交于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.
(1)求證:AC是⊙O的切線;
(2)已知AB=10,BC=6,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).請將解題過程填寫完整.
解:∵EF∥AD(已知)
∴∠2=∠3 )---①
又∵∠1=∠2(已知)
∴∠1=∠3( 。----②
∴AB∥______( 。----③
∴∠BAC+∠AGD=180°( )----④
∵∠BAC=70°(已知)
∴∠AGD=1800-700=1100
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com