精英家教網 > 初中數學 > 題目詳情
如圖,A,B是⊙O上的兩點,AC是⊙O的切線,∠B=70°,則∠BAC等于( )

A.70°
B.35°
C.20°
D.10°
【答案】分析:欲求∠BAC,由AC是⊙O的切線知道∠OAC=90°,又可推知∠OAB=∠B=70°,則∠BAC=∠OAC-∠OAB可求.
解答:解:∵OA=OB,
∴∠B=∠OAB=70°,
∵AC是⊙O的切線,
∴OA⊥AC,
則∠BAC=20°.
故選C.
點評:本題主要考查了切線的性質及三角形內角和定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=35°,則∠OAC等于( 。
A、65°B、35°C、70°D、55°

查看答案和解析>>

科目:初中數學 來源: 題型:

20、已知:如圖,E、F是AB上的兩點,AE=BF,AC∥BD,∠C=∠D.求證:CF=DE.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,A、B是⊙O上的兩點,AC是⊙O的切線,∠OBA=75°,⊙O的半徑為1,則OC的長等于( 。
A、
3
2
B、
2
2
C、
2
3
3
D、
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•南京)如圖,A、B是⊙O上的兩個定點,P是⊙O上的動點(P不與A、B重合)、我們稱∠APB是⊙O上關于點A、B的滑動角.
(1)已知∠APB是⊙O上關于點A、B的滑動角,
①若AB是⊙O的直徑,則∠APB=
90
90
°;
②若⊙O的半徑是1,AB=
2
,求∠APB的度數;
(2)已知O2是⊙O1外一點,以O2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,E、F是AB上的兩點,AC=BD,AC∥BD,∠C=∠D;
求證:AE=FB.

查看答案和解析>>

同步練習冊答案