【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形,以此方式,繞點(diǎn)O旋轉(zhuǎn)2018次得到正方形,如果點(diǎn)A的坐標(biāo)為(1,0),那么那么點(diǎn)的坐標(biāo)為_____.
【答案】(,0)
【解析】
根據(jù)圖形可知:點(diǎn)B在以O為圓心,以OB為半徑的圓上運(yùn)動(dòng),由旋轉(zhuǎn)可知:將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形OA1B1C1,相當(dāng)于將線段OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,可得對(duì)應(yīng)點(diǎn)B的坐標(biāo),根據(jù)規(guī)律發(fā)現(xiàn)是8次一循環(huán),可得結(jié)論.
∵四邊形OABC是正方形,且OA=1,
∴B(1,1),
連接OB,
由勾股定理得:OB=,
由旋轉(zhuǎn)得:OB=OB1=OB2=OB3=…=,
∵將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形OA1B1C1,
相當(dāng)于將線段OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(1,1),B3(,0),…,
發(fā)現(xiàn)是8次一循環(huán),所以2019÷8=252…余3,
∴點(diǎn)B2019的坐標(biāo)為(,0)
故答案為:(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出(1)如圖①,在△ABC中,BC=6,D為BC上一點(diǎn),AD=4,則△ABC面積的最大值是 .
問題探究(2)如圖②,已知矩形ABCD的周長為12,求矩形ABCD面積的最大值.
問題解決(3)如圖③,△ABC是葛叔叔家的菜地示意圖,其中AB=30米,BC=40米,AC=50米,現(xiàn)在他想利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔欲建的魚塘是四邊形ABCD,且滿足∠ADC=60°.你認(rèn)為葛叔叔的想法能否實(shí)現(xiàn)?若能,求出這個(gè)四邊形魚塘周長的最大值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列每個(gè)圖形都是由一些黑點(diǎn)和一些白點(diǎn)按一定的規(guī)律組成的.
(1)根據(jù)規(guī)律,第4個(gè)圖中有 個(gè)白點(diǎn);第個(gè)圖形中,白點(diǎn)和黑點(diǎn)總數(shù)的和為 (用表示,為正整數(shù));
(2)有沒有可能黑點(diǎn)比白點(diǎn)少2020個(gè),如果有,求出此時(shí)的值;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,CD平分∠ACB,點(diǎn)D,E關(guān)于CB對(duì)稱,連接EB并延長,與AD的延長線交于點(diǎn)F,連接DE,CE.對(duì)于以下結(jié)論:
①DE垂直平分CB;②AD=BE;③∠F不一定是直角;④EF2+DF2=2CD2.
其中正確的是( )
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=-x2+x+c(-2020≤x≤1)的圖象記為L1,最大值為M1;函數(shù)y=-x2+2cx+1(1≤x≤2020)的圖象記為L2,最大值為M2.L1的右端點(diǎn)為A,L2的左端點(diǎn)為B,L1,L2合起來的圖形記為L.
(1)當(dāng)c=1時(shí),求M1,M2的值;
(2)若把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“美點(diǎn)”,當(dāng)點(diǎn)A,B重合時(shí),求L上“美點(diǎn)”的個(gè)數(shù);
(3)若M1,M2的差為,直接寫出c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且與軸交于點(diǎn)C,與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)).
(1)求該拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P是該拋物線上一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過點(diǎn)P作PD∥軸,交直線AC于點(diǎn)D;作PE∥x軸,交直線AC于點(diǎn)E,以PD,PE為邊的矩形PEFD,問矩形PEFD周長是否存在最大值?若存在,求出此時(shí)P點(diǎn)的坐標(biāo)及最大值;若不存在,請(qǐng)說明理由;
(3)在問題(2)的條件下,P點(diǎn)滿足∠DAP=90°,且點(diǎn)E在軸上,點(diǎn)F在拋物線上,問是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時(shí)在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時(shí)的速度前往救援,問巡邏艇能否在1小時(shí)內(nèi)到達(dá)漁船C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共100間,這三類養(yǎng)老專用房間分別為單人間(1個(gè)養(yǎng)老床位),雙人間(2個(gè)養(yǎng)老床位),三人間(3個(gè)養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在10至30之間(包括10和30),且雙人間的房間數(shù)是單人間的2倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.
(1)根據(jù)題意,填寫下表:
單人間的房間數(shù) | 10 | … | … | 30 | |
雙人間的房間數(shù) | _________ | … | … | 60 | |
三人間的房間數(shù) | 70 | … | _________ | … | _________ |
養(yǎng)老床位數(shù) | 260 | … | _________ | … | _________ |
(2)若該養(yǎng)老中心建成后可提供養(yǎng)老床位200個(gè),求的值;
(3)求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個(gè)?最少提供養(yǎng)老床位多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com