如圖,設(shè)P為△ABC內(nèi)任一點(diǎn),求證:PA+PB+PC>(AB+BC+CA).

答案:
解析:

  證明:∵PA+PB>AB,PA+PC>AC,PB+PC>BC,

  ∴2(PA+PB+PC)>AB+AC+BC,

  ∴PA+PB+PC>(AB+AC+BC).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)P為△ABC外一點(diǎn),P在邊AC之外,在∠B之內(nèi).S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三邊a,b,c上的高為ha=3,hb=5,hc=6,則P到三邊的距離之和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)O為△ABC內(nèi)一點(diǎn),且∠AOB=∠BOC=∠COA=120°,P為任意一點(diǎn)(不是O).求證:PA+PB+PC>OA+OB+OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,設(shè)O為△ABC內(nèi)一點(diǎn),連接AO、BO、CO,并延長(zhǎng)交BC、CA、AB于點(diǎn)D、E、F,已知S△AOB:S△BOC:S△AOC=3:4:6.則
OD
AO
OE
BO
OF
CO
等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年四川省南充市高坪中學(xué)九年級(jí)數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:填空題

如圖,設(shè)P為△ABC外一點(diǎn),P在邊AC之外,在∠B之內(nèi).S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三邊a,b,c上的高為ha=3,hb=5,hc=6,則P到三邊的距離之和為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年第12屆“五羊杯”初中數(shù)學(xué)競(jìng)賽初三試卷(解析版) 題型:填空題

如圖,設(shè)P為△ABC外一點(diǎn),P在邊AC之外,在∠B之內(nèi).S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三邊a,b,c上的高為ha=3,hb=5,hc=6,則P到三邊的距離之和為   

查看答案和解析>>

同步練習(xí)冊(cè)答案