【題目】圖中的數(shù)陣是由全體正奇數(shù)排成的.
(1)圖中平行四邊形框內(nèi)的九個(gè)數(shù)之和與中間的數(shù)有什么關(guān)系?
(2)在圖中任意作一個(gè)類似(1)中的平行四邊形框,這九個(gè)數(shù)之和還有這種規(guī)律嗎?請(qǐng)說(shuō)出理由.這九個(gè)數(shù)之和能等于2 016嗎?2 015,2 025呢?若能,請(qǐng)寫(xiě)出這九個(gè)數(shù)中最小的一個(gè);若不能,請(qǐng)說(shuō)出理由.
【答案】(1)平行四邊形框內(nèi)的九個(gè)數(shù)之和是中間的數(shù)的9倍.(2)這九個(gè)數(shù)之和不能為2016;這九個(gè)數(shù)之和也不能為2015;這九個(gè)數(shù)之和能為2025,中間數(shù)為225,最小的數(shù)為207.
【解析】
(1)、求出各數(shù)與中間數(shù)的差值,觀察發(fā)現(xiàn)該值成對(duì)出現(xiàn),此時(shí)不難得到這九個(gè)數(shù)之和與中間數(shù)的關(guān)系了;
(2)、不妨設(shè)框中間的數(shù)為n,根據(jù)(1)中各數(shù)與中間數(shù)的關(guān)系,可用n表示出各數(shù),從而得到9個(gè)數(shù)之和與中間數(shù)的關(guān)系;
由上面的結(jié)果不難得到任意作一個(gè)類似(1)的平行四邊形框,框中的九個(gè)數(shù)之和都是中間的數(shù)的9倍,從而判斷出2015、2016、2025中可能是這九個(gè)數(shù)之和的數(shù).注意:數(shù)陣是由全體奇數(shù)排成!
最后,根據(jù)框中的最小的數(shù)比中間的數(shù)小18,即可得到九個(gè)數(shù)中最小的一個(gè).
(1)平行四邊形框內(nèi)的九個(gè)數(shù)之和是中間的數(shù)的9倍.
(2)任意作一個(gè)類似(1)中的平行四邊形框,規(guī)律仍然成立.
不妨設(shè)平行四邊形框中間的數(shù)為n,則這九個(gè)數(shù)按從小到大的順序排列依次為(n-18),(n-16),(n-14),(n-2),n,(n+2),(n+14),(n+16),(n+18).顯然,其和為9n,是n的9倍.
這九個(gè)數(shù)之和不能為2 016.若和為2 016,則9n=2 016,n=224,是偶數(shù),顯然不在數(shù)陣中.
這九個(gè)數(shù)之和也不能為2 015.因?yàn)? 015不能被9整除.
這九個(gè)數(shù)之和能為2 025,中間數(shù)為225,最小的數(shù)為225-18=207
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”小長(zhǎng)假,小穎和小梅兩家計(jì)劃從“北京天安門”“三亞南山”“內(nèi)蒙古大草原”三個(gè)景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質(zhì)地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來(lái)確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知當(dāng)x1=a,x2=b,x3=c時(shí),二次函數(shù)y= x2+mx對(duì)應(yīng)的函數(shù)值分別為y1 , y2 , y3 , 若正整數(shù)a,b,c恰好是一個(gè)三角形的三邊長(zhǎng),且當(dāng)a<b<c時(shí),都有y1<y2<y3 , 則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寧波火車站北廣場(chǎng)將于2015年底投入使用,計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為BC邊上的點(diǎn),反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D(m,2)和AB邊上的點(diǎn)E(3, ).
(1)求反比例函數(shù)的表達(dá)式和m的值;
(2)將矩形OABC的進(jìn)行折疊,使點(diǎn)O于點(diǎn)D重合,折痕分別與x軸、y軸正半軸交于點(diǎn)F,G,求折痕FG所在直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=4 ,BD=4,動(dòng)點(diǎn)P在線段BD上從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),PF⊥AB于點(diǎn)F,四邊形PFBG關(guān)于BD對(duì)稱,四邊形QEDH與四邊形PFBG關(guān)于AC對(duì)稱.設(shè)菱形ABCD被這兩個(gè)四邊形蓋住部分的面積為S1 , 未被蓋住部分的面積為S2 , BP=x.
(1)用含x的代數(shù)式分別表示S1 , S2;
(2)若S1=S2 , 求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列做法正確的是( )
A. 方程=1+去分母,得2(2x-1)=1+3(x-3)
B. 方程4x=7x-8移項(xiàng),得4x-7x=8
C. 方程3(5x-1)-2(2x-3)=7去括號(hào),得15x-3-4x-6=7
D. 方程1-x=3x+移項(xiàng),得-x-3x=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC三邊長(zhǎng)a=b=6,c=12.
(1)如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸建立平面直角坐標(biāo)系,直接出點(diǎn)B,C的坐標(biāo).
(2)如圖2,過(guò)點(diǎn)C作∠MCN=45°交AB于點(diǎn)M,N,請(qǐng)證明AM2+BN2=MN2;
(3)如圖3,當(dāng)點(diǎn)M,N分布在點(diǎn)B異側(cè)時(shí),則(3)中的結(jié)論還成立嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧,交CD于點(diǎn)E,連接AE、BE.作BF⊥AE于點(diǎn)F.
(1)求證:BF=AD;
(2)若EC= ﹣1,∠FEB=67.5°,求扇形ABE的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com