【題目】如圖①,在中, , , 、分別是、邊的中點.將繞點順時針旋轉(zhuǎn)角(),得到(如圖②).
().
()當(dāng)時, 為直角三角形.
()當(dāng)時,旋轉(zhuǎn)角.
()如圖③,在旋轉(zhuǎn)過程中,設(shè)與所在直線交于點,當(dāng)成為等腰三角形時,旋轉(zhuǎn)角或,其中正確的結(jié)論有:( ).
A. ()()() B. ()()() C. ()()() D. ()()()
【答案】A
【解析】(1)∵在中, , , 、分別是、邊的中點,
∴△ABC和△ADE都是等腰直角三角形,而△AB′C′是由△ABC旋轉(zhuǎn)得到的,
∴易證△ADB′≌△AEC′,
∴DB′=EC′,∠AEC′=∠ADB′,
(2)∵DB′∥AE,
∴∠AED+∠EDB′=180°,
∴∠EDB′=180°-45°=135°,
∴∠ADB′=135°-∠ADE=135°-45°=90°,
∴∠AEC′=∠ADB′=90°,
∴△AEC′是直角三角形;
(3)∵AE=AC=AC′,∠AEC′=90°,
∴∠AC′E=30°,
∴=∠EAC′=60°;
(4)當(dāng)△ADP為等腰三角形時,存在以下幾種情況:
①當(dāng)點P在線段DE上,且AD=PD時,∠DAP=∠DBA=,此時;
②當(dāng)點P在線段DE上,且AP=DP時,∠PAD=∠PDA=45°,此時, ;
③當(dāng)點P在線段DE上,且AP=AD時,∠ADP=∠APD=45°,此時,∠PAD=90°,
∴,此時點P與點E重合;
④當(dāng)點P在線段ED的延長線上,且PD=AD時,∠DAP=∠DPA=∠ADE=22.5°,此時, =∠PAD+∠DAE=22.5°+90°=112.5°.
綜上所述,當(dāng)△ADP為等腰三角形時, 的度數(shù)為0°或22.5°或45或,112.5°.
即(1)、(2)、(3)是正確的,(4)是錯誤的;
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班組織班級聯(lián)歡會,最后進(jìn)入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機(jī)會,抽獎方案如下:將一副撲克牌中點數(shù)為“2”,“3”,“3”,“5”,“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎,記每次抽出兩張牌點數(shù)之差為,按表格要求確定獎項.
(1)用列表或畫樹狀圖的方法求出甲同學(xué)獲得一等獎的概率;
(2)是否每次抽獎都會獲獎,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在將一個多邊形的內(nèi)角逐個相加時,把其中一個內(nèi)角多加了一次,錯誤地得到內(nèi)角和為840°,則這個多邊形的邊數(shù)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點A,與y軸交于點B.
(1)求A、B兩點的坐標(biāo);
(2)若點P(m,n)為線段AB上的一個動點(與A、B不重合),作PE⊥x軸于點E,PF⊥y軸于點F,連接EF,問:
①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;
②是否存在點P,使EF的值最小?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點D、E、F,且∠ACB=90°,AB=5,BC=3,點P在射線AC上運動,過點P作PH⊥AB,垂足為H.
(1)直接寫出線段AD及⊙O半徑的長;
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)PH與⊙O相切時,求相應(yīng)的y值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD垂直于弦AB,垂足為E,AM⊥BC于點M,交CD于N,連AD.
(1)求證:AD=AN;
(2)若AB=,ON=1,求⊙O的半徑;
(3)若且AE=4,求CM的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABM=30°,AB=20,C是射線BM上一點.
(1)在下列條件中,可以唯一確定BC長的是 ;(填寫所有符合條件的序號)
①AC=13;②tan∠ACB=;③△ABC的面積為126.
(2)在(1)的答案中,選擇一個作為條件,畫出示意圖,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com