【題目】在邊長為2的正方形ABCD中,點P、Q分別是邊AB、BC上的兩個動點(與點A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點E,AE交CD于點F,連結PQ.
(1)求證:△APQ≌△QCE;
(2)求∠QAE的度數;
(3)設BQ=x,當x為何值時,QF∥CE,并求出此時△AQF的面積.
【答案】(1)證明見解析;(2)45°;(3)當x=-2+2時,S=-4+4.
【解析】
試題(1)判斷出△PBQ是等腰三角形,然后求出∠APQ=∠QCE=135°,再根據同角的余角相等求出∠PAQ=∠CQE,再求出AP=CQ,然后利用“角邊角”證明即可;
(2)根據全等三角形對應邊相等可得AQ=EQ,判斷出△AQE是等腰三角形,再根據等腰三角形的性質解答;
(3)把△ABQ繞點A逆時針旋轉90°得到△ADG,求出∠GAF=45°,從而得到∠GAF=∠QAF,再利用“邊角邊”證明△AQF和△AGF全等,根據全等三角形的對應邊相等可得QF=GF,再根據兩直線平行,同位角相等求出∠CQF=45°,然后求出CQ=CF,分別用x求出CQ、CF,利用勾股定理列式求出QF,然后列出方程求出x,再求出△AGF的面積,即為△AQF的面積.
試題解析:(1)∵ 四邊形ABCD是正方形,
∴ AB=BC,∠B=∠BCD=∠DCM=90°,
∵ BP=BQ,
∴ △PBQ是等腰直角三角形,AP=QC,
∴ ∠BPQ=45°,
∴ ∠APQ=135°
∵ CE平分∠DCM,
∴ ∠DCE=∠ECM=45°,
∴ ∠QCE=135°,
∴ ∠APQ=∠QCE=135°,
∵ AQ⊥QE,即 ∠AQE=90°,
∴ ∠AQB+∠CQE=90°.
∵ ∠AQB+∠BAQ=90°.
∴ ∠BAQ=∠CQE.
∴ △APQ≌△QCE(ASA).
(2)由(1)知△APQ≌△QCE.∴ QA=QE.
∵ ∠AQE=90°,
∴ △AQE是等腰直角三角形,∴ ∠QAE=45°
(3)連結AC,若QF∥CE,則∠FQC=∠ECM=45°.
∴ △QCF是等腰直角三角形,∴ CF=CQ=2-x, ∴ DF=BQ=x.
∵ AB=AD,∠B=∠D=90°,
∴ △ABQ≌△ADF(SAS).
∴ AQ=AF,∠QAB=∠DAF=22.5°,
∴ AC垂直平分QF,
∴ ∠QAC=∠FAC=∠QAB=∠FAD=22.5°, FQ=2QN,
∴ FQ=2BQ=2x.
在Rt△QCF中,根據勾股定理,得(2-x)2+(2-x)2=(2x)2.
解這個方程,得 x1=-2+2, x2=-2-2(舍去).
∴ 當x=-2+2時,QF∥CE.
此時,S△QCF=S△QEF,
∴ S△QCF+ S△AQF=S△QEF+ S△AQF= S△AQE=AQ2,
∴ S△AQF= S△AQE- S△QCF=AQ2-CQ2=(AQ2-CQ2)
=[(x2+22)-(2-x)2]=·4x=2x=-4+4.
科目:初中數學 來源: 題型:
【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別.
(1)隨機從箱子里取出1個球,則取出黃球的概率是多少?
(2)隨機從箱子里取出1個球,放回攪勻再取第二個球,請你用畫樹狀圖或列表的方法表示出所有可能出現(xiàn)的結果,并求兩次取出的都是白色球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點,則y1<y2其中結論正確的是( )
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答
(1)閱讀理解:
我們把滿足某種條件的所有點所組成的圖形,叫做符合這個條件的點的軌跡.
例如:角的平分線是到角的兩邊距離相等的點的軌跡.
問題:如圖1,已知EF為△ABC的中位線,M是邊BC上一動點,連接AM交EF于點P,那么動點P為線段AM中點.
理由:∵線段EF為△ABC的中位線,∴EF∥BC,
由平行線分線段成比例得:動點P為線段AM中點.
由此你得到動點P的運動軌跡是: .
(2)知識應用:
如圖2,已知EF為等邊△ABC邊AB、AC上的動點,連結EF;若AF=BE,且等邊△ABC的邊長為8,求線段EF中點Q的運動軌跡的長.
(3)拓展提高:
如圖3,P為線段AB上一動點(點P不與點A、B重合),在線段AB的同側分別作等邊△APC和等邊△PBD,連結AD、BC,交點為Q.
①求∠AQB的度數;
②若AB=6,求動點Q運動軌跡的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=8 ,AD=10,點E是CD中點,將這張紙片依次折疊兩次;第一次折疊紙片使點A與點E重合,如圖2,折痕為MN,連接ME、NE;第二次折疊紙片使點N與點E重合,如圖3,點B落到B′處,折痕為HG,連接HE,則tan∠EHG= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,A市到B市的路程為260千米,甲車從A市前往B市運送物資,行駛2小時在M地汽車出現(xiàn)故障,立即通知技術人員乘乙車從A市趕來維修(通知時間忽略不計),乙車到達M地后又經過20分鐘修好甲車后以原速原路返回A市,同時甲車以原來1.5倍的速度前往B市,如圖是兩車距A市的路程y(千米)與甲車所用時間x(小時)之間的函數圖象,下列四種說法:
①甲車提速后的速度是60千米/時;
②乙車的速度是96千米/時;
③乙車返回時y與x的函數關系式為y=﹣96x+384;
④甲車到達B市乙車已返回A市2小時10分鐘.
其中正確的個數是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t秒(t≥0).
(1)直接用含t的代數式分別表示:QB= ,PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;
(3)如圖2,在整個運動過程中,求出線段PQ中點M所經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知∠ABC=60°,EF⊥AB,垂足為F,連接DF.
(1)求證:△ABC≌△EAF;
(2)試判斷四邊形EFDA的形狀,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com