【題目】如圖,拋物線y= +bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C(0,﹣3).
(1)求拋物線的解析式;
(2)D是y軸正半軸上的點(diǎn),OD=3,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,
①試說(shuō)明EF是圓的直徑;
②判斷△AEF的形狀,并說(shuō)明理由.
【答案】
(1)解:∵拋物線y= +bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C(0,﹣3),
∴ ,解得 ,
∴拋物線的解析式為y= ﹣2x﹣3;
(2)解:按照題意畫(huà)出圖形,如下圖,
①∵B點(diǎn)坐標(biāo)(3,0)、C點(diǎn)坐標(biāo)(0,﹣3),
∴OB=OC=3,
∴△BOC為等腰直角三角形,
∴∠CBO=45°,
又∵D是y軸正半軸上的點(diǎn),OD=3,
∴△BOD為等腰直接三角形,
∴∠OBD=45°,
∠CBD=∠CBO+∠OBD=45°+45°=90°,
即∠FBE=90°,
∴EF是圓的直徑.
②∵∠CBO=∠OBD=45°,∠AFE=∠OBD,∠AEF=∠CBO(在同圓中,同弧所對(duì)的圓周角相等),
∴∠AEF=∠AFE=45°,
∴∠FAE=90°,AE=AF,
∴△AEF是等腰直角三角形.
【解析】(1)用待定系數(shù)法可以求出拋物線的解析式;
(2)①根據(jù)B,C兩點(diǎn)的坐標(biāo)得出OB=OC=3,從而判斷出△BOC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)知∠CBO=45°,進(jìn)而判斷出△BOD為等腰直接三角形,從而得出∠OBD=45°,∠FBE=90°,根據(jù)圓周角定理得出EF是圓的直徑;②根據(jù)∠CBO=∠OBD=45°,及在同圓中,同弧所對(duì)的圓周角相等得∠AFE=∠OBD,∠AEF=∠CBO,從而得出∠AEF=∠AFE=45°,然后根據(jù)三角形內(nèi)角和及等角對(duì)等邊得出∠FAE=90°,AE=AF,從而得出結(jié)論。
【考點(diǎn)精析】本題主要考查了圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,∠BAO=30°,以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn)D.
(1)連接BD,OE.求證:BD=OE;
(2)連接DE交AB于F.求證:F為DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】認(rèn)真閱讀并填空:
已知:如圖,∠1=∠2,∠C=∠D,試說(shuō)明:∠A=∠F.
解:∵∠1=∠2(已知),∠2=∠3( )
∴∠1=∠3(等量代換)
∴BD∥EC( )
∴∠4=∠C(兩直線平行,同位角相等)
又∠C=∠D(已知)
∴∠4=∠D( )
∴ ∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹(shù)苗,已知1株A種樹(shù)苗和2株B種樹(shù)苗共20元,且A種樹(shù)苗比B種樹(shù)苗每株多2元.
(1)A、B兩種樹(shù)苗每株各多少元?
(2)若購(gòu)買(mǎi)A、B兩種樹(shù)苗共360株,并且A種樹(shù)苗的數(shù)量不少于B種樹(shù)苗數(shù)量的一半,請(qǐng)你設(shè)計(jì)一種費(fèi)用最省的購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)23﹣17﹣(﹣7)+(﹣16);
(2)-5+6÷(-2)×;
(3)-36×;
(4)﹣23+|5﹣8|+24÷(﹣3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(一)問(wèn)題提出:如何把n個(gè)邊長(zhǎng)為1的正方形,剪拼成一個(gè)大正方形?
(二)解決方法
探究一:若n是完全平方數(shù),我們不用剪切小正方形,可直接將小正方形拼成一個(gè)大正方形,如圖(1),用四個(gè)邊長(zhǎng)為1的小正方形可以拼成一個(gè)大正方形.
問(wèn)題1:請(qǐng)用9個(gè)邊長(zhǎng)為1的小正方形在圖(2)的位置拼成一個(gè)大正方形.
探究二:若n=2,5,10,13等這些數(shù),都可以用兩個(gè)正整數(shù)的平方和來(lái)表示,以n=5為例,用5個(gè)邊長(zhǎng)為1的小正方形剪拼成一個(gè)大正方形.
(1)計(jì)算:拼成的大正方形的面積為5,邊長(zhǎng)為,可表示成;
(2)剪切:如圖(3)將5個(gè)小正方形按如圖所示分成5部分,虛線為剪切線;
(3)拼圖:以圖(3)中的虛線為邊,拼成一個(gè)邊長(zhǎng)為的大正方形,如圖(4).
問(wèn)題2:請(qǐng)仿照上面的研究方式,用13個(gè)邊長(zhǎng)為1的小正方形剪拼成一個(gè)大正方形;
(1)計(jì)算:拼成的大正方形的面積為____,邊長(zhǎng)為_____,可表示成____;
(2)剪切:請(qǐng)仿照?qǐng)D(3)的方法,在圖(5)的位置畫(huà)出圖形.
(3)拼圖:請(qǐng)仿照?qǐng)D(4)的方法,在圖(6)的位置出拼成的圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,如果△ABC與△DEF都是正方形網(wǎng)格中的格點(diǎn)三角形(頂點(diǎn)在格點(diǎn)上),那么S△DEF:S△ABC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為一種新型電子產(chǎn)品在該城市的特約經(jīng)銷(xiāo)商,已知每件產(chǎn)品的進(jìn)價(jià)為40元,該公司每年銷(xiāo)售這種產(chǎn)品的其他開(kāi)支(不含進(jìn)貨價(jià))總計(jì)100萬(wàn)元,在銷(xiāo)售過(guò)程中得知,年銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間存在如表所示的函數(shù)關(guān)系,并且發(fā)現(xiàn)y是x的一次函數(shù).
銷(xiāo)售單價(jià)x(元) | 50 | 60 | 70 | 80 |
銷(xiāo)售數(shù)量y(萬(wàn)件) | 5.5 | 5 | 4.5 | 4 |
(1)求y與x的函數(shù)關(guān)系式;
(2)問(wèn):當(dāng)銷(xiāo)售單價(jià)x為何值時(shí),該公司年利潤(rùn)最大?并求出這個(gè)最大值;
【備注:年利潤(rùn)=年銷(xiāo)售額﹣總進(jìn)貨價(jià)﹣其他開(kāi)支】
(3)若公司希望年利潤(rùn)不低于60萬(wàn)元,請(qǐng)你幫助該公司確定銷(xiāo)售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫(huà)弧交AD于點(diǎn)E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com