【題目】某網(wǎng)店以每件80元的進(jìn)價(jià)購進(jìn)某種商品,原來按每件100元的售價(jià)出售,一天可售出50件;后經(jīng)市場調(diào)查,發(fā)現(xiàn)這種商品每件的售價(jià)每降低2元,其銷售量可增加10件.
(1)該網(wǎng)店銷售該商品原來一天可獲利潤 元.
(2)設(shè)后來該商品每件售價(jià)降價(jià)元,網(wǎng)店一天可獲利潤元.
①若此網(wǎng)店為了盡可能增加該商品的銷售量,且一天仍能獲利1080元,則每件商品的售價(jià)應(yīng)降價(jià)多少元?
②求與之間的函數(shù)關(guān)系式,當(dāng)該商品每件售價(jià)為多少元時(shí),該網(wǎng)店一天所獲利潤最大?并求最大利潤值.
【答案】(1)1000;(2)①8;②95;1125
【解析】
(1)用每件利潤乘以50件即可;
(2)每件售價(jià)降價(jià)x元,則每件利潤為(100﹣80﹣x)元,銷售量為(50+5x)件,它們的乘積為利潤y,
①利用y=1080得到方程(100﹣80﹣x)(50+5x)=1080,然后解方程即可;
②由于y=(100﹣80﹣x)(50+5x),則可利用二次函數(shù)的性質(zhì)確定最大利潤值.
解:(1)該網(wǎng)店銷售該商品原來一天可獲利潤為(100﹣80)×50=1000(元),
故答案為1000;
(2)①y=(100﹣80﹣x)(50+5x)=﹣5x2+50x+1000,
當(dāng)y=1080時(shí),﹣5x2+50x+1000=1080,
整理得x2﹣10x+16=0,解得x1=2,x2=8,
答:每件商品的售價(jià)應(yīng)降價(jià)2元或8元;
②y=(100﹣80﹣x)(50+5x)=﹣5x2+50x+1000=﹣5(x﹣5)2+1125,
當(dāng)x=5時(shí),y有最大值,最大值為1125,
則100﹣x=95,
答:當(dāng)該商品每件售價(jià)為95元時(shí),該網(wǎng)店一天所獲利潤最大,最大利潤值為1125元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)計(jì)劃對(duì)面積為1200m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)甲、乙兩施工隊(duì)每天分別能完成綠化的面積是多少?
(2)設(shè)先由甲隊(duì)施工x天,再由乙隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)解析式;
(3)在(2)的情況下,若甲隊(duì)綠化費(fèi)用為1600元/天,乙隊(duì)綠化費(fèi)用為700元/天,在施工過程中每天需要支付高溫補(bǔ)貼a元(100≤a≤300),且工期不得超過14天,則如何安排甲,乙兩隊(duì)施工的天數(shù),使施工費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三江夜游項(xiàng)目是寧波市月光經(jīng)濟(jì)和“三江六岸”景觀提升的重要工程,一艘游輪從周宿夜江游船碼頭到寧波大劇院游船碼頭順流而行用40分鐘,從寧波大劇院游船碼頭沿原線返回周宿夜江游船碼頭用了1小時(shí),已知游輪在靜水中的平均速度為8千米/小時(shí),求水流的速度.設(shè)水流的速度為x千米/小時(shí),則可列方程為( )
A.40(8-x)=1×(8+x) B. (8+x)=8 C. (8+x)=8-x D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB,BC于點(diǎn)E,F(xiàn),連接EF(如圖①).
(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過程中,請你觀察、猜想,并解答:
①tan∠ PEF的值是否發(fā)生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點(diǎn)經(jīng)過的路線長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角板ABC的直角頂點(diǎn)C在直線DE上,CF平分∠BCD.
(1)在圖1中,若∠BCE=40°,求∠ACF的度數(shù);
(2)在圖1中,若∠BCE=α,直接寫出∠ACF的度數(shù)(用含α的式子表示);
(3)將圖1中的三角板ABC繞頂點(diǎn)C旋轉(zhuǎn)至圖2的位置,探究:寫出∠ACF與∠BCE的度數(shù)之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)在Rt△ABC中,∠C=90°,AC=BC=1,將其放入平面直角坐標(biāo)系,使A點(diǎn)與原點(diǎn)重合,AB在x軸上,△ABC沿x軸順時(shí)針無滑動(dòng)的滾動(dòng),點(diǎn)A再次落在x軸時(shí)停止?jié)L動(dòng),則點(diǎn)A經(jīng)過的路線與x軸圍成圖形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為拓寬銷售渠道,某水果商店計(jì)劃將146個(gè)柚子和400個(gè)橙子裝入大、小兩種禮箱進(jìn)行出售,其中每件小禮箱裝2個(gè)柚子和4個(gè)橙子;每件大禮箱裝3個(gè)柚子和9個(gè)橙子.要求每件禮箱都裝滿,柚子恰好全部裝完,橙子有剩余,設(shè)小禮箱的數(shù)量為x件.
(1)大禮箱的數(shù)量為________件(用含x的代數(shù)式表示).
(2)若橙子剩余12個(gè),則需要大、小兩種禮箱共多少件?
(3)由于橙子有剩余,則小禮箱至少需要________件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于、B兩點(diǎn),與y軸交于點(diǎn),拋物線的對(duì)稱軸交x軸于點(diǎn)D.
求拋物線的解析式;
求的值;
在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使是以CD為腰的等腰三角形?如果存在,直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí)線段EF最長?求出此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,…按照此規(guī)律繼續(xù)下去,則S2016的值為( 。
A. ()2013B. ()2014C. ()2013D. ()2014
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com