如圖,拋物線y=ax2+bx+c的對(duì)稱軸為直線x=1,與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-1,0)、C(0,3).
(1)求此拋物線的解析式;
(2)若此拋物線的頂點(diǎn)為P,將△BOC繞著它的頂點(diǎn)B順時(shí)針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)的角度為α,旋轉(zhuǎn)后的圖形為△B.
①當(dāng)∥CP時(shí),求α的大。
②△BOC在第一象限內(nèi)旋轉(zhuǎn)的過程中,當(dāng)旋轉(zhuǎn)后的△B有一邊與BP重合時(shí),求△B不在BP上的頂點(diǎn)的坐標(biāo).
(1)由題意得 (1分) 解得, 所以,此拋物線的解析式為 (3分) (2)①如圖,頂點(diǎn)P為(1,4),CP,BC, BP,又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30A2/0898/0028/ad01ea6864839962e49fc8ab49001840/C/Image104.gif" width=122 height=21>,所以∠PCB=90° (5分) 又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30A2/0898/0028/ad01ea6864839962e49fc8ab49001840/C/Image96.gif" width=33 height=18>CP,所以⊥BC.所以點(diǎn)在BC上.所以=45° (7分) 、谌鐐溆脠D1,當(dāng)B與BP重合時(shí),過點(diǎn)作D⊥OB于D. 因?yàn)椤螾BC+∠CB=∠CB+∠AB=45°,所以∠AB=∠PBC. 則△DB∽△CBP,所以,所以,所以BD=3D (9分) 設(shè)D=x,則BD=3x,根據(jù)勾股定理,得,解得,所以BD,所以點(diǎn)的坐標(biāo)為(,) (10分) 如備用圖2,當(dāng)B與BP重合時(shí),過點(diǎn)B作x軸的垂線BE,過點(diǎn)作E⊥BE于E,因?yàn)椤螾BE+∠EB=∠PBE+∠CBP=45°,所以∠EB=∠PBC. 所以△EB∽△CBP,所以,所以,所以BE=3E. 設(shè)E為y,則BE=3y,根據(jù)勾股定理,得,解得,所以BE,所以的坐標(biāo)為(,) (12分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2008年江西省南昌市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P,且與拋物線y2=ax2-ax-1,相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值?其最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分8分)如圖,拋物線y=ax-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.
1.⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).
2.⑵求DPAB的面積;
3.⑶若將該拋物線先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省興化市九年級(jí)上學(xué)期期末四校聯(lián)考數(shù)學(xué)卷 題型:解答題
(本題滿分8分)如圖,拋物線y=ax-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.
【小題1】⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省興化市九年級(jí)上學(xué)期期末四校聯(lián)考數(shù)學(xué)卷 題型:解答題
(本題滿分8分)如圖,拋物線y=ax-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.
1.⑴求a的值和該拋物線頂點(diǎn)P的坐標(biāo).
2.⑵求DPAB的面積;
3.⑶若將該拋物線先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com