【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長(zhǎng)為的邊長(zhǎng)為,則的內(nèi)切圓半徑為__________

【答案】

【解析】

根據(jù)ABCEFD都是等邊三角形,可證得AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線(xiàn)長(zhǎng)定理得到AH=AE+AF-EF=a-b);,再根據(jù)直角三角形的性質(zhì)即可求出AEF的內(nèi)切圓半徑.

解:如圖1,⊙IABC的內(nèi)切圓,由切線(xiàn)長(zhǎng)定理可得:AD=AE,BD=BF,CE=CF,

AD=AE=[AB+AC-BD+CE]= [AB+AC-BF+CF]=AB+AC-BC),

如圖2,∵ABC,DEF都為正三角形,

AB=BC=CA,EF=FD=DE,∠BAC=B=C=FED=EFD=EDF=60°,
∴∠1+2=2+3=120°,∠1=3;
AEFCFD中,

,
∴△AEF≌△CFDAAS);
同理可證:AEF≌△CFD≌△BDE;
BE=AF,即AE+AF=AE+BE=a
設(shè)MAEF的內(nèi)心,過(guò)點(diǎn)MMHAEH,
則根據(jù)圖1的結(jié)論得:AH=AE+AF-EF=a-b);
MA平分∠BAC
∴∠HAM=30°;
HM=AHtan30°=a-b=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)如圖,AB是半圓O的直徑,CD⊥AB于點(diǎn)C,交半圓于點(diǎn)E, DF切半圓于點(diǎn)F。已知∠AEF=135°

1)求證:DF∥AB;

2)若OC=CEBF=,求DE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人間的距離y()與甲出發(fā)的時(shí)間x()之間的關(guān)系如圖中折線(xiàn)OA-AB-BC-CD所示.

(1)求線(xiàn)段AB的表達(dá)式,并寫(xiě)出自變量x的取值范圍;

(2)求乙的步行速度;

(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將點(diǎn)E繞點(diǎn)D按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)F,則線(xiàn)段AF的長(zhǎng)的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)yx2+mx+n的圖象經(jīng)過(guò)點(diǎn)(﹣30),點(diǎn)(1,0

1)求拋物線(xiàn)解析式;(2)求拋物線(xiàn)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形AOBC是正方形,點(diǎn)C的坐標(biāo)是(4,0).

(Ⅰ)正方形AOBC的邊長(zhǎng)為   ,點(diǎn)A的坐標(biāo)是   

(Ⅱ)將正方形AOBC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,點(diǎn)A,B,C旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,B′,C′,求點(diǎn)A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;

(Ⅲ)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線(xiàn)OACB方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),同時(shí),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿折線(xiàn)OBCA方向以2個(gè)單位/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)它們相遇時(shí)同時(shí)停止運(yùn)動(dòng),當(dāng)△OPQ為等腰三角形時(shí),求出t的值(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)嘗試探究

如圖①,在中,,,點(diǎn)分別是邊、上的點(diǎn),且.

的值為多少;②直線(xiàn)與直線(xiàn)的位置關(guān)系;

2)類(lèi)比延伸

如圖②,若將圖①中的繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過(guò)程中,請(qǐng)判斷的值及直線(xiàn) 與直線(xiàn)的位置關(guān)系,并說(shuō)明理由;

3)拓展運(yùn)用

,在旋轉(zhuǎn)過(guò)程中,當(dāng),,三點(diǎn)在同一直線(xiàn)上時(shí),請(qǐng)直接寫(xiě)出此時(shí)線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A(3,0),B(2,﹣3),并且以x=1為對(duì)稱(chēng)軸.

(1)求此函數(shù)的解析式;

(2)作出二次函數(shù)的大致圖象;

(3)在對(duì)稱(chēng)軸x=1上是否存在一點(diǎn)P,使△PABPA=PB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)圓,一只電子跳蚤在標(biāo)有數(shù)字的五個(gè)點(diǎn)上跳躍.若它停在奇數(shù)點(diǎn)上時(shí),則一次沿順時(shí)針?lè)较蛱鴥蓚(gè)點(diǎn);若停在偶數(shù)點(diǎn)上時(shí),則下一次沿逆時(shí)針?lè)较蛱粋(gè)點(diǎn).若這只跳蚤從1這點(diǎn)開(kāi)始跳,則經(jīng)過(guò)2019次跳后它所停在的點(diǎn)對(duì)應(yīng)的數(shù)為( )

A. 1 B. 2 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案