【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:購買原價超過200元的商品,超過200元的部分可以享受打折優(yōu)惠,若購買商品的實際付款金額y(單位:元)與商品原價x(單位:元)的函數(shù)關系的圖象如圖所示,則超過200元的部分可以享受的優(yōu)惠是(  )

A. 打五折 B. 打六折 C. 打七折 D. 打八折

【答案】C

【解析】

設超過200元的部分可以享受的優(yōu)惠是打n折,根據(jù):實際付款金額=200+(商品原價-200)×,列出y關于x的函數(shù)關系式,由圖象將x=500、y=410代入求解即可得.

設超過200元的部分可以享受的優(yōu)惠是打n折,

根據(jù)題意,得:y=200+(x-200),

由圖象可知,當x=500時,y=410,即:410=200+(500-200)×,

解得:n=7,

∴超過200元的部分可以享受的優(yōu)惠是打7折,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)請根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=(   2;

(2)用含n的等式表示上面的規(guī)律:   

(3)用找到的規(guī)律解決下面的問題:

計算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將背面相同,正面分別標有數(shù)字1,2,3,4的四張卡片洗勻后,背面朝上放在桌面上.
(1)從中隨機抽取一張卡片,求該卡片正面上的數(shù)字是偶數(shù)的概率;
(2)先從中隨機抽取一張卡片(不放回),將該卡片正面上的數(shù)字作為十位上的數(shù)字;再隨機抽取一張,將該卡片正面上的數(shù)字作為個位上的數(shù)字,則組成的兩位數(shù)恰好是4的倍數(shù)的概率是多少?請用樹狀圖或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BC= ,AD= ,CD=12,過AB的中點E作AB的垂線交BC的延長線于F.
(1)求BF的長;
(2)如圖2,以點C為原點,建立平面直角坐標系,請通過計算判斷,過E點的反比例函數(shù)圖象與直線AB是否還有另一個交點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, , ,以點為頂點、為腰在第三象限作等腰

)求點的坐標.

)如圖, 軸負半軸上一個動點,當點沿軸負半軸向下運動時,以為頂點, 為腰作等腰,過軸于點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(2,0),B(1,m2﹣4m+5).

(1)直接判斷△ABO是什么圖形;
(2)如果SABO有最小值,求m的值;
(3)拋物線y=﹣(x﹣2)(x﹣n)經(jīng)過點B且與y軸交于點C,與x軸交于兩點A,D.
①用含m的式子表示點C和點D坐標;
②點P是拋物線上x軸上方任一點,PQ∥BD交x軸于點Q,將△ABO向左平移到△A′B′O′,點A,B,O的對應點分別是A′,B′,O′,當點A'與點D重合時,點B'在線段PQ上,如果點P恰好是拋物線頂點,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃銷售A,B兩種型號的商品,經(jīng)調(diào)查,用1500元采購A型商品的件數(shù)是用600元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價多30元.

(1)求一件A,B型商品的進價分別為多少元?

(2)若該商場購進A,B型商品共100件進行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),已知A型商品的售價為200/件,B型商品的售價為180/件,且全部能售出,求該商品能獲得的利潤最小是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,DAB上一點,EAC延長線上的一點,且CE=BD,連接DEBC于點P.

(1)求證:PE=PD;

(2)若CE:AC=1:5,BC=10,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上從左到右的三個點,,所對應的數(shù)分別為,,.其中,,如圖所示.

(1)若以為原點,寫出點,所對應的數(shù),并計算的值.

(2)若原點,兩點之間,求的值.

(3)若是原點,且,求的值.

查看答案和解析>>

同步練習冊答案