【題目】如圖所示,在ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為 .
【答案】9:16
【解析】解:∵四邊形ABCD為平行四邊形, ∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:16.
所以答案是:9:16.
【考點精析】本題主要考查了平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1, );
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,AC=BC,∠C=90°,點D為AB邊的中點,∠EDF=90°,△EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F.當∠EDF繞點D旋轉(zhuǎn)到DE⊥AC于點E時(如圖①),易證S△DEF+S△CEF=S△ABC.
當∠EDF繞點D旋轉(zhuǎn)到DE和AC不垂直時,在圖②和圖③這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,S△DEF,S△CEF,S△ABC又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉(zhuǎn)60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當點F在線段BO上,且點M,F(xiàn),C三點在同一條直線上時,求證:AC= AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】均勻的正四面體的各面依次標有1,2,3,4四個數(shù)字.小明做了60次投擲實驗,結(jié)果統(tǒng)計如下:
朝下的數(shù)字 | 1 | 2 | 3 | 4 |
出現(xiàn)的次數(shù) | 16 | 20 | 14 | 10 |
(1)計算上述實驗中“4”朝下的頻率.
(2)“根據(jù)實驗結(jié)果,投擲一次正四面體,出現(xiàn)2朝下的概率是”的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】松山區(qū)種子培育基地用A,B,C三種型號的甜玉米種子共1500粒進行發(fā)芽試驗,從中選出發(fā)芽率高的種子進行推廣,通過試驗知道,C型號種子的發(fā)芽率為80%,根據(jù)試驗數(shù)據(jù)繪制了下面兩個不完整的統(tǒng)計圖:
(1)求C型號種子的發(fā)芽數(shù);
(2)通過計算說明,應(yīng)選哪種型號的種子進行推廣?
(3)如果將所有已發(fā)芽的種子放在一起,從中隨機取出一粒,求取到C型號發(fā)芽種子的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11·漳州)(滿分8分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:
(1)請將以上兩幅統(tǒng)計圖補充完整;
(2)若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有_ ▲ 人達標;
(3)若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com