【題目】為了抓住文化藝術(shù)節(jié)的商機(jī),某商店決定購(gòu)進(jìn) A、B 兩種藝術(shù)節(jié)紀(jì)念品,若購(gòu)進(jìn) A 種紀(jì)念品 8 件,B 種紀(jì)念品 3 件,需要 950 元;若購(gòu)進(jìn)A 種紀(jì)念品 5 件,B 種紀(jì)念品 6 件,需要 800 元.
(1)求購(gòu)進(jìn)A、B 兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共 100 件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買(mǎi)這 100 件紀(jì)念品的資金不少于 7000 元,但不超過(guò) 7500 元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷(xiāo)售每件 A 件紀(jì)念品可獲利潤(rùn) 20 元,每件 B 種紀(jì)念品可獲利潤(rùn) 30 元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
【答案】(1)A種每件100元,B種每件50元.(2)11種.(3)2600元.
【解析】
(1)根據(jù)關(guān)系式:A種紀(jì)念品8件需要錢(qián)數(shù)+B種紀(jì)念品3件需要錢(qián)數(shù)=950元,A種念品 5 件所需錢(qián)數(shù)+ B 種紀(jì)念品 6 件所需錢(qián)數(shù)=800元,列出二元一次方程組,解之即可.(2根據(jù)關(guān)系式:用于購(gòu)買(mǎi)這 100 件紀(jì)念品的資金不少于 7000 元,但不超過(guò) 7500 元,列出不等式組,解之即可.(3)計(jì)算出各種方案的利潤(rùn),比較即可.
解:(1)設(shè)該商店購(gòu)進(jìn)A種紀(jì)念品每件需x元,購(gòu)進(jìn)B種紀(jì)念品每件需y元.根據(jù)題意得:
解方程組得:
所以購(gòu)進(jìn)一件A種紀(jì)念品需要100元,購(gòu)進(jìn)一件B種紀(jì)念品需要50元.
(2)設(shè)該商店購(gòu)進(jìn)A種紀(jì)念品件,則購(gòu)進(jìn)B種紀(jì)念品有(100-)件,根據(jù)題意得:
解得:40≤≤50
∵取正整數(shù)
∴共有11種進(jìn)貨方案.
(3)設(shè)利潤(rùn)為W,根據(jù)題意得:
即:(W是關(guān)于的一次函數(shù))
由一次函數(shù)的性質(zhì)可知,此函數(shù)W隨的增大而減小,因?yàn)?0≤≤50
所以當(dāng)=40時(shí),W取最大值即2600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線(xiàn)EF分別交△ABC的邊AB,AC和CB的延長(zhǎng)線(xiàn)于點(diǎn)D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過(guò)B點(diǎn)作BM∥AC交FD于點(diǎn)M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,AB=4,△ABC的面積為8,BD平分∠ABC。若M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)在第一象限,且,點(diǎn)的坐標(biāo)為,設(shè)的面積為,
(1)當(dāng)點(diǎn)的橫坐標(biāo)為1時(shí),試求的面積.
(2)求S關(guān)于x的函數(shù)表達(dá)式及自變量x的取值范圍.
(3)試判斷的面積能否大于6,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線(xiàn)l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線(xiàn)的解析式;
(2)點(diǎn)D在拋物線(xiàn)上,DE∥y軸交直線(xiàn)l于點(diǎn)E,點(diǎn)F在直線(xiàn)l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線(xiàn)上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“全民讀書(shū)月”活動(dòng)中,小明調(diào)查了班級(jí)里40名同學(xué)本學(xué)期計(jì)劃購(gòu)買(mǎi)課外書(shū)的花費(fèi)情況,并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(直接填寫(xiě)結(jié)果)
(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ;
(2)這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是 ;
(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計(jì)本學(xué)期計(jì)劃購(gòu)買(mǎi)課外書(shū)花費(fèi)50元的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線(xiàn)BE交AC于點(diǎn)E,過(guò)點(diǎn)E作直線(xiàn)BE的垂線(xiàn)交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)E作EH⊥AB于點(diǎn)H,求證:EF平分∠AEH;
(3)求證:CD=HF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把Rt△ABC放在平面直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=13,點(diǎn)A、B的坐標(biāo)分別為(1,0),(6,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線(xiàn)y=2x﹣4上時(shí),線(xiàn)段BC掃過(guò)的面積為( 。
A.84B.80C.91D.78
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與一次函數(shù)的圖象相交于點(diǎn).過(guò)點(diǎn)作軸的垂線(xiàn),分別交正比例函數(shù)的圖象于點(diǎn),交一次函數(shù)的圖象于點(diǎn),連接.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)求的面積;
(3)在軸上是否存在一點(diǎn),使為直角三角形?若存在,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com