已知二次函數(shù)y=-
1
4
x2+
3
2
x
的圖象如圖所示.

(1)求它的對稱軸與x軸交點D的坐標;
(2)將該拋物線沿它的對稱軸向上平移k個單位,設平移后的拋物線與x軸,y軸的交點分別為A、B、C三點,若∠ACB=90°,求此時拋物線的解析式;
(3)設(2)中平移后的拋物線的頂點為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關系,并說明理由.
(4)在(2)的條件下,平行于x軸的直線x=t(0<t<k)分別交AC、BC于E、F兩點,試問在x軸上是否存在點P,使得△PEF是等腰直角三角形?若存在,請直接寫P點的坐標;若不存在,請說明理由.
(1)y=-
1
4
x2+
3
2
x=-
1
4
(x-3)2+
9
4

頂點坐標為(3,
9
4
),
所以點D坐標為(3,0);

(2)拋物線沿它的對稱軸向上平移k個單位得到的函數(shù)解析式為
y=-
1
4
x2+
3
2
x+k
令y=0,即-
1
4
x2+
3
2
x+k=0,
解得x1=3-
9+4k
,x2=3+
9+4k

即A(3-
9+4k
,0)、B(3+
9+4k
,0),C(0,k);
在Rt△AOC中
AC2=OA2+OC2=(
9+4k
-3)2+k2
BC2=OB2+OC2=(
9+4k
+3)2+k2;
AB2=(2
9+4k
2=AC2+BC2=(
9+4k
-3)2+k2+(
9+4k
+3)2+k2;
整理得k(k-4)=0
k=0(不合題意),k=4;
∴拋物線的解析式y(tǒng)=-
1
4
x2+
3
2
x+4;

(3)由拋物線的解析式y(tǒng)=-
1
4
x2+
3
2
x+4;
得出M(3,
25
4
),A(-2,0),B(8,0),C(0,4)
如圖,

連接MC、CD,根據(jù)勾股定理
求得MC=
15
4
,DC=5,MD=
25
4
,
∵MC2+CD2=MD2
由勾股定理逆定理△CMD為直角三角形,且DC⊥CM,
又∵DC=DA=DB,
∴直線CM與⊙D相切;

(4)存在.P1(-
4
7
,0),P2(
4
3
,0),P3(
16
7
,0)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點,且對稱軸為直線x=4.設頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線y=2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O運動,過點M作直線MNx軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.求S關于t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某公司推出一款新型手機,投放市場以來前3個月的利潤情況如圖所示,該圖可以近似看作拋物線的一部分.請結合圖象,解答以下問題:
(1)求該拋物線對應的二次函數(shù)解析式;
(2)該公司在經(jīng)營此款手機過程中,第幾月的利潤能達到24萬元?
(3)若照此經(jīng)營下去,請你結合所學的知識,對公司在此款手機的經(jīng)營狀況(是否虧損?何時虧損?)作預測分析.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負半軸上,點C在y軸的負半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標;
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DEBC交AC于點E,連接CD,設BD的長為m,△CDE的面積為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷
PM
BE
+
PN
AD
是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷
PA
PB
=
EF
EG
是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一座拋物線形拱橋,在正常水位AB時,水面AB寬24m,拱頂距離水面4m.以拋物線的頂點為原點,以拋物線的對稱軸為y軸,建立如圖所示的平面直角坐標系.
(1)求拋物線的解析式;
(2)若水位上升3m就達到警戒線CD的位置,求這時水面CD的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點C(0,2),過點C作圓的切線交x軸于點D.
(1)求過A,B,C三點的拋物線的解析式;
(2)求點D的坐標;
(3)設平行于x軸的直線交拋物線于E,F(xiàn)兩點,問:是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2-4ax+c與y軸交于點A(0,3),點B是拋物線上的點,且滿足ABx軸,點C是拋物線的頂點.
(1)求拋物線的對稱軸及B點坐標;
(2)若拋物線經(jīng)過點(-2,0),求拋物線的表達式;
(3)對(2)中的拋物線,點D在線段AB上,若以點A、C、D為頂點的三角形與△AOC相似,試求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用鋁合金型材做一個形狀如圖1所示的矩形窗框,設窗框的一邊為xm,窗戶的透光面積為ym2,y與x的函數(shù)圖象如圖2所示.
(1)觀察圖象,當x為何值時,窗戶透光面積最大?
(2)當窗戶透光面積最大時,窗框的另一邊長是多少?

查看答案和解析>>

同步練習冊答案