用鋁合金型材做一個(gè)形狀如圖1所示的矩形窗框,設(shè)窗框的一邊為xm,窗戶的透光面積為ym2,y與x的函數(shù)圖象如圖2所示.
(1)觀察圖象,當(dāng)x為何值時(shí),窗戶透光面積最大?
(2)當(dāng)窗戶透光面積最大時(shí),窗框的另一邊長是多少?
(1)由圖象可知,當(dāng)x=1時(shí),窗戶透光面積最大.(3分)

(2)因?yàn)樽畲笸腹饷娣e是1.5平方米,
即矩形的最大面積是1.5平方米,此時(shí)x=1米,
根據(jù)矩形面積計(jì)算公式,另一邊為1.5米.
所以窗框另一邊長為1.5米.(5分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+c經(jīng)過原點(diǎn)(0,0)和A(1,-3),B(-1,5)兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為C,以O(shè)C為直徑作⊙M,如果過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,且與y軸的正半軸交點(diǎn)為E,連接MD,已知E點(diǎn)的坐標(biāo)為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長DM交⊙M于點(diǎn)N,連接ON,OD,當(dāng)點(diǎn)P在(2)的條件下運(yùn)動到什么位置時(shí),能使得四邊形EOMD和△DON的面積相等,請求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線.正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過她的頭頂點(diǎn)E.以點(diǎn)o為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,設(shè)此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式;
(2)如果身高為157.5厘米的小明站在OD之間且離點(diǎn)O的距離為t米,繩子甩到最高處時(shí)超過他的頭頂,請結(jié)合函數(shù)圖象,求出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
4
x2+
3
2
x
的圖象如圖所示.

(1)求它的對稱軸與x軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線沿它的對稱軸向上平移k個(gè)單位,設(shè)平移后的拋物線與x軸,y軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.
(4)在(2)的條件下,平行于x軸的直線x=t(0<t<k)分別交AC、BC于E、F兩點(diǎn),試問在x軸上是否存在點(diǎn)P,使得△PEF是等腰直角三角形?若存在,請直接寫P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(-3,-4),線段OB繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后與x軸的正半軸重合,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)A.
(1)直接寫出點(diǎn)A的坐標(biāo),并求出經(jīng)過A,O,B三點(diǎn)的拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)C,使BC+OC的值最小?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
(3)如果點(diǎn)P是拋物線上的一個(gè)動點(diǎn),且在x軸的上方,當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),△PAB的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo)和△PAB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+4的對稱軸為x=-1,且與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-3,0),
(1)求該拋物線的解析式;
(2)若該拋物線的頂點(diǎn)為D,求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D兩點(diǎn)的坐標(biāo);
(2)若線段OB上存在點(diǎn)P,使PD⊥PC,求過D,P,C三點(diǎn)的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,開口向上的拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-6,0),另一個(gè)交點(diǎn)是B,與y軸的交點(diǎn)是C,且拋物線的頂點(diǎn)的縱坐標(biāo)是-2,△AOC的面積為6
3

(1)求點(diǎn)B、C的坐標(biāo);
(2)求拋物線的解析式;
(3)M點(diǎn)從點(diǎn)A出發(fā)向點(diǎn)C以每秒
3
2
個(gè)單位勻速運(yùn)動.同時(shí)點(diǎn)P以每秒2個(gè)單位的速度從A點(diǎn)出發(fā),沿折線AB、BC向點(diǎn)C勻速運(yùn)動,在運(yùn)動的過程中,設(shè)△AMP的面積為y,運(yùn)動的時(shí)間為x,求y與x的函數(shù)關(guān)系式及y的最大值;
(4)在運(yùn)動的過程中,過點(diǎn)M作MNx軸交BC邊于N,試問,在x軸上是否存在點(diǎn)Q,使△MNQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸相交于點(diǎn)C,頂點(diǎn)D(1,-
9
2

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求四邊形ACDB的面積;
(3)若平移(1)中的拋物線,使平移后的拋物線與坐標(biāo)軸僅有兩個(gè)交點(diǎn),請直接寫出一個(gè)平移后的拋物線的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案