【題目】在四邊形ABCD中,對角線ACBD相交于點(diǎn)O,設(shè)銳角∠AOBα,將△DOC按逆時針方向旋轉(zhuǎn)得到△D′OC′<旋轉(zhuǎn)角<90°)連接AC′BD′,AC′BD′相交于點(diǎn)M

(1)、當(dāng)四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′

(2)、當(dāng)四邊形ABCD為平行四邊形時,設(shè)ACkBD,如圖2

猜想此時△AOC′△BOD′有何關(guān)系,證明你的猜想;

探究AC′BD′的數(shù)量關(guān)系以及∠AMBα的大小關(guān)系,并給予證明.

【答案】(1)見解析;(2、△BOD′∽△AOC′;(2AC′=kBD′∠AMBα

【解析】試題分析:(1)證明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,△BOD′△AOC′中,,∴△BOD′≌△AOC′

2)解:①△AOC′∽△BOD′;理由如下:在平行四邊形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′∴△BOD′∽△AOC′,∴BD′AC′=OBOA=BDAC∵AC=kBD,∴AC′=kBD′∴△BOD′∽△AOC′;

②AC′=kBD′,∠AMB=α;設(shè)BD′OA相交于點(diǎn)N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,綜上所述,AC′=kBD′,∠AMB=α

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達(dá)式為,與軸交點(diǎn)為,與軸交點(diǎn)為

1)求兩點(diǎn)的坐標(biāo);

2)若點(diǎn)為線段上的一個動點(diǎn),為坐標(biāo)原點(diǎn),是否存在點(diǎn),使的值最。咳舸嬖,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時分別從這條路兩端的入口處駛?cè),并始終在高速公路上正常行駛.甲車駛往B城,乙車駛往A城,甲車在行駛過程中速度始終不變.甲車距B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的關(guān)系如圖.

1)求y關(guān)于x的表達(dá)式;

2)已知乙車以60千米/時的速度勻速行駛,設(shè)行駛過程中,兩車相距的路程為s(千米).請直接寫出s關(guān)于x的表達(dá)式;

3)當(dāng)乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為a(千米/時)并保持勻速行駛,結(jié)果比甲車晚40分鐘到達(dá)終點(diǎn),求乙車變化后的速度a.在下圖中畫出乙車離開B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫做格點(diǎn).利用正方形網(wǎng)絡(luò)可以畫出長度為無理數(shù)的線段,如圖1.請參考此方法按下列要求作圖:

1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個面積為17的正方形,并標(biāo)出字母;

2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個三角形,使,,并標(biāo)出字母;

3)猜想是何種特殊三角形.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題解決:

如圖1,已知正方形,,把含)的直角三角板的一個銳角頂點(diǎn)和點(diǎn)重合,三角板和正方形的,兩邊分別相交于兩點(diǎn).

1)當(dāng)時,求的長;

探究發(fā)現(xiàn):

2)在圖1的基礎(chǔ)上,試探究,有怎樣的數(shù)量關(guān)系,請寫出猜想,并給予證明.

類比延伸:

3)如圖2,若三角板和正方形,兩邊的延長線分別相交于兩點(diǎn),請直接寫出,存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周

寫出點(diǎn)B的坐標(biāo)______

當(dāng)點(diǎn)P移動了4秒時,描出此時P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).

在移動過程中,當(dāng)點(diǎn)Px軸距離為5個單位長度時,求點(diǎn)P移動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12厘米,OB=6厘米.點(diǎn)P從點(diǎn)O開始沿OA邊向點(diǎn)A1厘米/秒的速度移動;點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O1厘米/秒的速度移動.如果PQ同時出發(fā),用t(秒)表示移動的時間(0≤t≤6),那么,當(dāng)t為何值時,POQAOB相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有AB兩種型號的客車共11輛,它們的載客量(不含司機(jī))、日租金、車輛數(shù)如下表所示,已知這11輛客車滿載時可搭載乘客350人.

A型客車

B型客車

載客量(人/輛)

40

25

日租金(元/輛)

320

200

車輛數(shù)(輛)

a

b

1)求a、b的值;

2)某校七年級師生周日集體參加社會實踐,計劃租用A、B兩種型號的客車共6輛,且租車總費(fèi)用不超過1700元.

①最多能租用A型客車多少輛?

②若七年級師生共195人,寫出所有的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,延長⊙O的直徑AB至點(diǎn)C,使得BC=AB,點(diǎn)P是⊙O上半部分的一個動點(diǎn)(點(diǎn)P不與A、B重合),連結(jié)OP,CP.

(1)∠C的最大度數(shù)為  ;

(2)當(dāng)⊙O的半徑為3時,△OPC的面積有沒有最大值?若有,說明原因并求出最大值;若沒有,請說明理由;

(3)如圖2,延長PO交⊙O于點(diǎn)D,連結(jié)DB,當(dāng)CP=DB時,求證:CP是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案