【題目】已知:如圖,在△ABC中,cos∠ABC= ,sin∠ACB= ,AC=2,分別以AB,AC為邊向△ABC形外作正方形ABGF和正方形ACDE,連接EF,點(diǎn)M是EF的中點(diǎn),連接AM,則AM的長(zhǎng)為 .
【答案】
【解析】解:如圖,過(guò)F作AE的平行線,交AM的延長(zhǎng)線于H,則∠HFM=∠AEM,∠H=∠EAM,
∵點(diǎn)M是EF的中點(diǎn),
∴FM=EM,
∴△FHM≌△EAM,
∴AE=FH=AC,AM=MH= AH,
∵四邊形ABCF是正方形,
∴AF=BA,
∵∠AFH+∠FAE=180°,∠CAB+∠HFA=180°,
∴∠AFH=∠BAC,
在△AFH和△BAC中,
,
∴△AFH≌△BAC(SAS),
∴AH=BC=2AM,
即AM= BC,
如圖,過(guò)A作AP⊥BC于P,
∵cos∠ABC= ,sin∠ACB= ,AC=2,
∴AP=AC×sin∠ACB=2× = ,CP= AC=1,∠BAP=45°=∠ABP,
∴BP=AP= ,
∴BC= +1,
∴AM= BC= ,
所以答案是: .
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)和解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖,在中,,于點(diǎn)D.可知:不需要證明;
特例探究:如圖,,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C在的邊AM、AN上,且,于點(diǎn)F,于點(diǎn)證明:≌;
歸納證明:如圖,點(diǎn)B,C在的邊AM、AN上,點(diǎn)E,F在內(nèi)部的射線AD上,、分別是、的外角已知,求證:≌;
拓展應(yīng)用:如圖,在中,,點(diǎn)D在邊BC上,,點(diǎn)E、F在線段AD上,若的面積為24,則與的面積之和為______直接寫出結(jié)果
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與x軸交于點(diǎn),與y軸交于點(diǎn),把直線沿x軸的負(fù)方向平移6個(gè)單位得到直線,直線與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,連接BC.
如圖,分別求出直線和的函數(shù)解析式;
如果點(diǎn)P是第一象限內(nèi)直線上一點(diǎn),當(dāng)四邊形DCBP是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
如圖,如果點(diǎn)E是線段OC的中點(diǎn),,交直線于點(diǎn)F,在y軸的正半軸上能否找到一點(diǎn)M,使是等腰三角形?如果能,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對(duì)稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=15,AC=13,AD⊥BC于D,AD=12,⊙O是△ABC的外接圓,則⊙O的半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的推理過(guò)程,在括號(hào)內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)=的圖像與正比例函數(shù)=的圖像相交于點(diǎn)A(2,),與軸相交于點(diǎn)B.
(1)求、的值;
(2)在軸上存在點(diǎn)C,使得△AOC的面積等于△AOB的面積,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為4cm的正方形ABCD中,點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿A→B→C和A→D→C的路線運(yùn)動(dòng),則當(dāng)PQcm時(shí),點(diǎn)C到PQ的距離為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1過(guò)點(diǎn)A(0,4),點(diǎn)D(4,0),直線l2:與x軸交于點(diǎn)C,兩直線,相交于點(diǎn)B.
(1)求直線的解析式和點(diǎn)B的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com