【題目】如圖,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD為較短的直角邊向△CDB的同側(cè)作Rt△DEC,滿足∠E=30°,∠DCE=90°,再用同樣的方法作Rt△FGC,∠FCG=90°,繼續(xù)用同樣的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的長.

【答案】解:在Rt△ACB中,∠B=30°,∠ACB=90°,
∴∠A=90°﹣30°=60°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠ACD=30°,
在Rt△ACD中,AC=a,
∴AD= a,
由勾股定理得:CD= = ,
同理得:FC= × = ,CH= × = ,
在Rt△HCI中,∠I=30°,
∴HI=2HC= ,
由勾股定理得:CI= = ,
答:CI的長為
【解析】在Rt△ACD中,利用30度角的性質(zhì)和勾股定理求CD的長;同理在Rt△ECD中求FC的長,在Rt△FCG中求CH的長;最后在Rt△HCI中,利用30度角的性質(zhì)和勾股定理求CI的長.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解含30度角的直角三角形的相關(guān)知識,掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,BAD=C=90°,AB=AD,AEBC于E,若線段AE=5,則S四邊形ABCD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿DE、EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EAEB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=BC,ACB=90°,點(diǎn)D、E在AB上,將ACD、BCE分別沿CD、CE翻折,點(diǎn)A、B分別落在點(diǎn)A′、B′的位置,再將A′CD、B′CE分別沿A′C、B′C翻折,點(diǎn)D與點(diǎn)E恰好重合于點(diǎn)O,則A′OB′的度數(shù)是( )

A.90° B.120° C.135° D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣3|﹣(2016+sin30°)0﹣(﹣ ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)活動(dòng)小組為了調(diào)查居民的用水情況,從某社區(qū)的1500戶家庭中隨機(jī)抽取了30戶家庭的月用水量,結(jié)果如下表所示:

月用水量(噸)

3

4

5

7

8

9

10

戶 數(shù)

4

3

5

11

4

2

1

(1)求這30戶家庭月用水量的平均數(shù),眾數(shù)和中位數(shù);

(2)根據(jù)上述數(shù)據(jù),試估計(jì)該社區(qū)的月用水量;

(3)由于我國水資源缺乏,許多城市常利用分段計(jì)費(fèi)的辦法引導(dǎo)人們節(jié)約用水,即規(guī)定每個(gè)家庭的月基本用水量為m(噸),家庭月用水量不超過m(噸)的部分按原價(jià)收費(fèi),超過m噸部分加倍收費(fèi),你認(rèn)為上述問題中的平均數(shù)、眾數(shù)、中位數(shù)中哪一個(gè)量作為月基本用水量比較合理?簡述理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是某省2010年教育發(fā)展情況有關(guān)數(shù)據(jù):

全省共有各級各類學(xué)校25000所,其中小學(xué)12500所,初中2000所,高中450所,其它學(xué)校10050所;全省共有在校學(xué)生995萬人,其中小學(xué)440萬人,初中200萬人,高中75萬人,其它280萬人;全省共有在職教師48萬人,其中小學(xué)20萬人,初中12萬人,高5萬人,其它11萬人.

請將上述資料中的數(shù)據(jù)按下列步驟進(jìn)行統(tǒng)計(jì)分析.

1)整理數(shù)據(jù):請?jiān)O(shè)計(jì)一個(gè)統(tǒng)計(jì)表,將以上數(shù)據(jù)填入表格中.

2)描述數(shù)據(jù):下圖是描述全省各級各類學(xué)校數(shù)的扇形統(tǒng)計(jì)圖,請將它補(bǔ)充完整.

3)分析數(shù)據(jù):

分析統(tǒng)計(jì)表中的相關(guān)數(shù)據(jù),小學(xué)、初中、高中三個(gè)學(xué)段的師生比,最小的是哪個(gè)學(xué)段?請直接寫出.(師生比=在職教師數(shù)在校學(xué)生數(shù))

根據(jù)統(tǒng)計(jì)表中的相關(guān)數(shù)據(jù),你還能從其它角度分析得出什么結(jié)論嗎?(寫出一個(gè)即可)

從扇形統(tǒng)計(jì)圖中,你得出什么結(jié)論?(寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 甲、乙兩名車工都加工要求尺寸是直徑10毫米的零件.從他們所生產(chǎn)的零件中,各取5件,測得直徑如下(單位:毫米)

甲:10.05, 10.02,9.97,9.95,10.01

乙:9.99,10.02,10.02,9.98,10.01

分別計(jì)算兩組數(shù)據(jù)的標(biāo)準(zhǔn)差(精確到0.01),說明在尺寸符合規(guī)格方面,誰做得較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

同步練習(xí)冊答案