如圖,在直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°,點F是CD邊上的一點,將紙片沿BF折疊,點C落在E點,使直線BE經(jīng)過點D,若BF=CF=8,則AD的長為
2
3
2
3
分析:利用等邊對等角可以得到∠FBC=∠C=30°,再利用折疊的性質(zhì)可以得到∠EBF=∠CBF=30°,從而可以求得∠BDF=90°.即可求得線段BD的長,然后在直角三角形ABD中求得AD即可.
解答:解:如圖:∵BF=CF=8,
∴∠FBC=∠C=30°,
∵折疊紙片使BC經(jīng)過點D,點C落在點E處,BF是折痕,
∴∠EBF=∠CBF=30°,
∴∠EBC=60°,
∴∠BDF=90°,
∵BF=CF=8,
∴BD=BF•sin60°=4
3

∵AD∥BC,
∴∠ADB=∠EBC=60°,
∵∠A=90°,
∴AD=BD•cos60°=2
3

故答案為:2
3
點評:本題考查了梯形的性質(zhì)、三角函數(shù)、等腰三角形的性質(zhì)以及折疊的性質(zhì).此題難度適中,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形紙片ABCD中,AD∥BC,∠ABC=90°,將紙片沿過點A的直線折疊,使點B與點D重合,折痕為AG.連接DG并展開紙片.
(1)判斷四邊形ABGD的形狀并說明你的理由;
(2)連接BD,交AG于點E,作∠BAG的平分線,交BD于點F,求證:EF+
12
AG=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形紙片ABCD中,AB∥DC,∠A=90°,CD>AD,將紙片沿過點D的直線折疊,使點A落在邊CD上的點E處,折痕為DF.連接EF并展開紙片.
(1)判斷四邊形ADEF的形狀,并說明理由.
(2)取線段AF的中點G,連接EG、DG,如果DG∥CB,試說明四邊形GBCE是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆上海市虹口區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,在直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°,點F是CD邊上一點,將紙片沿BF折疊,點C落在E點,使直線BE經(jīng)過點D,若BF=CF=8,則AD的長為         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年上海市虹口區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°,點F是CD邊上一點,將紙片沿BF折疊,點C落在E點,使直線BE經(jīng)過點D,若BF=CF=8,則AD的長為         .

 

查看答案和解析>>

同步練習(xí)冊答案