如圖,在直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°,點F是CD邊上一點,將紙片沿BF折疊,點C落在E點,使直線BE經(jīng)過點D,若BF=CF=8,則AD的長為         .

解析試題分析:利用等邊對等角可以得到∠FBC=∠C=30°,再利用折疊的性質(zhì)可以得到∠EBF=∠CBF=30°,從而可以求得∠BDF的度數(shù),即可以求得線段BD,然后在直角三角形ABD中求解即可.
∵BF=CF=8,
∴∠FBC=∠C=30°,
∵折疊紙片使BC經(jīng)過點D,點C落在點E處,BF是折痕,
∴∠EBF=∠CBF=30°,
∴∠EBC=60°,
∴∠BDF=90°
∵∠EBC=60°
∴∠ADB=60°,
∵BF=CF=8.
∴BD=BF•sin60°=
∴在Rt△BAD中,AD=BD×sin30°=
考點:梯形,矩形、直角三角形的相關知識
點評:解決此類題要懂得用梯形的常用輔助線,把梯形分割為矩形和直角三角形,從而由矩形和直角三角形的性質(zhì)來求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形紙片ABCD中,AD∥BC,∠ABC=90°,將紙片沿過點A的直線折疊,使點B與點D重合,折痕為AG.連接DG并展開紙片.
(1)判斷四邊形ABGD的形狀并說明你的理由;
(2)連接BD,交AG于點E,作∠BAG的平分線,交BD于點F,求證:EF+
12
AG=AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°,點F是CD邊上的一點,將紙片沿BF折疊,點C落在E點,使直線BE經(jīng)過點D,若BF=CF=8,則AD的長為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形紙片ABCD中,AB∥DC,∠A=90°,CD>AD,將紙片沿過點D的直線折疊,使點A落在邊CD上的點E處,折痕為DF.連接EF并展開紙片.
(1)判斷四邊形ADEF的形狀,并說明理由.
(2)取線段AF的中點G,連接EG、DG,如果DG∥CB,試說明四邊形GBCE是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年上海市虹口區(qū)中考二模數(shù)學試卷(解析版) 題型:填空題

如圖,在直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°,點F是CD邊上一點,將紙片沿BF折疊,點C落在E點,使直線BE經(jīng)過點D,若BF=CF=8,則AD的長為         .

 

查看答案和解析>>

同步練習冊答案