已知△ABC的三個頂點坐標如下表:
|
|
A(2,1) |
|
B(4,3) | |
C(5,1) | |
(1)將上表補充完整,并在直角坐標系中,畫出△;
(2)觀察△ABC與△,寫出有關這兩個三角形關系的一個正確結論。(原創(chuàng))
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2006年全國中考數學試題匯編《一次函數》(07)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2006年貴州省黔東南州中考數學試卷(大綱卷)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2011-2012學年江蘇鹽城鹽都區(qū)九年級下學期期中質量檢測數學試卷(解析版). 題型:解答題
問題提出
我們在分析解決某些數學問題時,經常要比較兩個數或代數式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
1.已知:多項式M =2a2-a+1 ,N =a2-2a .試比較M與N的大小.
2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。
①這樣的長方形可以畫 個;
②所畫的長方形中哪個周長最小?為什么?
拓展延伸
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內接正方形,問哪條邊上的內接正方形面積最大?為什么?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com