【題目】如圖,矩形ABCD中,AB=10,BC=5,點P為AB邊上一動點(不與點A,B重合),DP交AC于點Q.
(1)求證:△APQ∽△CDQ;
(2)當PD⊥AC時,求線段PA的長度;
(3)當點P在線段AC的垂直平分線上時,求sin∠CPB的值.
【答案】(1)見解析;(2)AP=;(3).
【解析】
試題分析:(1)根據(jù)矩形的性質(zhì)和相似三角形的判定定理證明即可;
(2)根據(jù)垂直的定義、相似三角形的性質(zhì)列出比例式,計算即可;
(3)連接PC,根據(jù)線段垂直平分線的性質(zhì)得到PC=PA,設PA=x,根據(jù)勾股定理列出關于x的方程,解方程即可.
(1)證明:∵四邊形ABCD是矩形,
∴DC∥AB,
∴∠QAP=∠QCD,∠QPA=∠QDC,
∴△APQ∽△CDQ;
(2)解:∵PD⊥AC,
∴∠QDC+∠QCD=90°,又∠QDC+∠QDA=90°,
∴∠QCD=∠QDA,又∠DAP=∠CDA=90°,
∴△DAP∽△CDA,
∴=,即=,
解得,AP=;
(3)解:連接PC,
∵點P在線段AC的垂直平分線上,
∴PC=PA,
設PA=x,則PC=x,PB=10﹣x,
由勾股定理得,PC2=PB2+BC2,即x2=(10﹣x)2+25,
解得,x=,
∴PC=PA=,
∴sin∠CPB==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于點A(1,8)、B(﹣4,m).
(1)求k1、k2、b的值;
(2)求△AOB的面積;
(3)若M(x1,y1)、N(x2,y2)是反比例函數(shù)y=圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠一月份生產(chǎn)某機器100臺,計劃三月份生產(chǎn)160臺.設二、三月份每月的平均增長率為x,根據(jù)題意列出的方程是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=k2x+b圖象的交點為A(m,1),B(﹣2,n),OA與x軸正方向的夾角為α,且tanα=.
(1)求反比例函數(shù)及一次函數(shù)的表達式;
(2)設直線AB與x軸交于點C,且AC與x軸正方向的夾角為β,求tanβ的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P表示我國的釣魚島,在此島周圍25海里水域有暗礁.我漁政海監(jiān)船由西向東航行到A處,發(fā)現(xiàn)P島在北偏東60°的方向上,輪船繼續(xù)向前航行20海里到達B處,發(fā)現(xiàn)P島在北偏東45°的方向上.該船若不改變航向繼續(xù)前進,有無觸礁的危險?(參考數(shù)據(jù)=1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關系.
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試利用上述結(jié)論探究∠P與∠A+∠B的數(shù)量關系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,A、B、C、D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.
(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com