若四條線段的長為2 cm,3 cm,4 cm,5 cm,若以其中三條線段為邊長,可以構(gòu)成多少個三角形?并把能構(gòu)成三角形邊的每組數(shù)分別列舉出來.

答案:
解析:

3個,2 3 4;3 4 5;2 4 5


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列命題:
①若a>b>0,則以2
ab
,a-b,a+b為三邊的三角形是直角三角形;②用長為4、5、7、8的四條線段作邊,其中以5、8作底可以作梯形;③等邊三角形是軸對稱圖形,但不是中心對稱圖形;④有兩邊和第三邊上的高對應(yīng)相等的兩個三角形全等.其中假命題的個數(shù)是(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為
89
10
a
的圓孔,需對鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);
(1)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是
 
,給出證明,并通過計算說明此時鐵片都能穿過圓孔;
(2)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片;
①當(dāng)BE=DF=
1
5
a
時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:黃岡難點(diǎn)課課練  八年級數(shù)學(xué)上冊 題型:044

如圖,是某種商品的商標(biāo)圖案,若每個小長方形都是長為2,寬為1的矩形

(1)求陰影部分的面積;

(2)線段AB、BC、AE、DE中,長為無理數(shù)的線段有哪幾條?是否有長為整數(shù)的線段,若有求出來?

(3)比較這四條線段的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:

如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為的圓孔,需對鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);

探究發(fā)現(xiàn):

1.如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個角去掉,只余下四邊形MNPQ,則此時鐵片的形狀是 _______,給出證明,并通過計算說明此時鐵片都能穿過圓孔;

拓展遷移:

2.如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線將矩形  鐵片切割成兩個全等的直角梯形鐵片;

 

①當(dāng)BE=DF=時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;

②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍 .

 

查看答案和解析>>

同步練習(xí)冊答案