已知:如圖,AD為△ABC的內(nèi)角平分線,且AD=AB,CM⊥AD于M. 求證:AM=(AB+AC) 。

證明:取AD、CD的中點(diǎn)為E,F(xiàn)點(diǎn),連接EF,F(xiàn)M,

∴EF是三角形ACD的中位線,
∴EF∥AC,EF=AC,
∠DEF=∠CAD,
∵CM⊥AD,CF=DF
∴DF=MF,∠FDM=∠FMD=∠ADB,
∵AB=AD,
∴∠B=∠ADB=∠AMF,
∴A、B、M、F四點(diǎn)共圓,
∴∠BAM=∠BFM,
∵AD平分∠BAC,
∴∠BAM=∠CAM=∠FEM,
∠FEM+∠EFD=∠EFD+∠BAM=∠EFD+∠BFM=∠EFM=∠FDM=∠FMD,
∴∠EFM=∠EMF,
∴EF=EM=AC,
∵AE=AD=AB,
∴AM=AE+EM=(AB+AC).
即AM=(AB+AC).

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,AD為Rt△ABC斜邊BC上的高,點(diǎn)E為DA延長(zhǎng)線上一點(diǎn),連接BE,過(guò)點(diǎn)C作CF⊥BE于點(diǎn)F,交AB、AD于M、N兩點(diǎn).
(1)若線段AM、AN的長(zhǎng)是關(guān)于x的一元二次方程x2-2mx+n2-mn+
5
4
m2=0的兩個(gè)實(shí)數(shù)根,求證:AM=AN;
(2)若AN=
15
8
,DN=
9
8
,求DE的長(zhǎng);
(3)若在(1)的條件下,S△AMN:S△ABE=9:64,且線段BF與EF的長(zhǎng)是關(guān)于y的一元二次方程5y2-16ky+10k2+5=0的兩個(gè)實(shí)數(shù)根,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知,如圖,AD為△ABC的角平分線,∠C=2∠B.求證:AB=AC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,AD為△ABC的內(nèi)角平分線,且AD=AB,CM⊥AD于M.求證:AM=
12
(AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖:AD為△ABC中BC邊上的中線,CE∥AB交AD的延長(zhǎng)線于E.求證:AB=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆北京市(初中部)八年級(jí)上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,AD為△ABC的內(nèi)角平分線,且AD=AB,CM⊥AD于M. 求證:AM=(AB+AC) 。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案