【題目】已知:在△ABC中,∠ACB=90°,CDABD,BE:AB=3:5,若CE=,cosACD=

(1)求cosABC;

(2)AC的值.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)“同角的余角相等”得到,∠ABC=∠ACD,再根據(jù)已知cosACD=即可得

(2)根據(jù),令BC=4k,AB=5k,則AC=3k,由BE:AB=3:5,知BE=3k,從而得CE=k再根據(jù)CE的長(zhǎng)即可得

試題解析:(1)在Rt△ACDRt△ABC中,

∵∠ABC+∠CAD=90°,∠ACD+∠CAD=90°,

∴∠ABC=∠ACD,

cosABC=cosACD=

(2)在RtABC中, ,令BC=4k,AB=5k,

AC=3k,

BE:AB=3:5,

BE=3k,

CE=k,且CE=,

k=,AC=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,,試說(shuō)明直線ADBC垂直請(qǐng)?jiān)谙旅娴慕獯疬^(guò)程的空格內(nèi)填空或在括號(hào)內(nèi)填寫(xiě)理由

理由:,已知

____________,______

____________

已知

______等量代換

____________,______

______

,已知

,

____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知y2x成正比例,且x2時(shí),y=﹣6.①求yx之間的函數(shù)關(guān)系式;②當(dāng)y3時(shí),求x的取值范圍.

2)已知經(jīng)過(guò)點(diǎn)(﹣2,﹣2)的直線l1y1mx+n與直線l2y2=﹣2x+6相交于點(diǎn)M1,p

①關(guān)于xy的二元一次方程組的解為   ;②求直線l1的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=2+bx+c與x軸交于點(diǎn)A、B,交y軸于點(diǎn)C(0,﹣2),且拋物線對(duì)稱軸x=﹣2交x軸于點(diǎn)D,E是拋物線在第3象限內(nèi)一動(dòng)點(diǎn).

(1)求拋物線y1的解析式;

(2)將△OCD沿CD翻折后,O點(diǎn)對(duì)稱點(diǎn)O′是否在拋物線y1上?請(qǐng)說(shuō)明理由.

(3)若點(diǎn)E關(guān)于直線CD的對(duì)稱點(diǎn)E′恰好落在x軸上,過(guò)E′作x軸的垂線交拋物線y1于點(diǎn)F,①求點(diǎn)F的坐標(biāo);②直線CD上是否存在點(diǎn)P,使|PE﹣PF|最大?若存在,試寫(xiě)出|PE﹣PF|最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A在第一象限,點(diǎn)A,B關(guān)于y軸對(duì)稱.

(1)若A(1,3),寫(xiě)出點(diǎn)B的坐標(biāo);

(2)若A(a,b),且△AOB的面積為a2,求點(diǎn)B的坐標(biāo)(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上線段AB=2(單位長(zhǎng)度),線段CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是-10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)當(dāng)點(diǎn)B與點(diǎn)C相遇時(shí),點(diǎn)A、點(diǎn)D在數(shù)軸上表示的數(shù)分別為________;

(2)當(dāng)t為何值時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合;

(3)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),求出此時(shí)點(diǎn)B在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ABC<20°,三邊長(zhǎng)分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長(zhǎng)為a+c+5b,則翻折11次后,所得圖形的周長(zhǎng)為_____________.(結(jié)果用含有a,b,c的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某種電動(dòng)汽車(chē)的性能,某機(jī)構(gòu)對(duì)這種電動(dòng)汽車(chē)進(jìn)行抽檢,獲得如圖中不完整的統(tǒng)計(jì)圖,其中,,,表示 一次充電后行駛的里程數(shù)分別為,.

1)問(wèn)這次被抽檢的電動(dòng)汽車(chē)共有幾輛?并補(bǔ)全條形統(tǒng)計(jì)圖;

電動(dòng)汽車(chē)一次充電后行駛里程數(shù)的條形統(tǒng)計(jì)圖

電動(dòng)汽車(chē)一次充電后行駛里程數(shù)的扇形統(tǒng)計(jì)圖

2)求扇形統(tǒng)計(jì)圖中表示一次充電后行駛路為的扇形圓心角的度數(shù);

3)估計(jì)這種電動(dòng)汽車(chē)一次充電后行駛的平均里程多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖點(diǎn)ORt△ABC斜邊AB上一點(diǎn),OA為半徑的OBC相切于點(diǎn)D,AC相交于點(diǎn)E,AB相交于點(diǎn)F,連接AD

1求證AD平分BAC;

2若點(diǎn)E為弧AD的中點(diǎn),探究線段BDCD之間的數(shù)量關(guān)系,并證明你的結(jié)論

3若點(diǎn)E為弧AD的中點(diǎn),CD=,求弧DF與線段BDBF所圍成的陰影部分的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案