【題目】已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE=,cos∠ACD=.
(1)求cos∠ABC;
(2)AC的值.
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)“同角的余角相等”得到,∠ABC=∠ACD,再根據(jù)已知cos∠ACD=即可得;
(2)根據(jù),令BC=4k,AB=5k,則AC=3k,由BE:AB=3:5,知BE=3k,從而得CE=k,再根據(jù)CE的長(zhǎng)即可得.
試題解析:(1)在Rt△ACD與Rt△ABC中,
∵∠ABC+∠CAD=90°,∠ACD+∠CAD=90°,
∴∠ABC=∠ACD,
∴cos∠ABC=cos∠ACD=
(2)在Rt△ABC中, ,令BC=4k,AB=5k,
則AC=3k,
由BE:AB=3:5,
知BE=3k,
則CE=k,且CE=,
則k=,AC=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,試說(shuō)明直線AD與BC垂直請(qǐng)?jiān)谙旅娴慕獯疬^(guò)程的空格內(nèi)填空或在括號(hào)內(nèi)填寫(xiě)理由.
理由:,已知
____________,______
____________
又,已知
______等量代換
____________,______
______
,已知
,,
____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知y﹣2與x成正比例,且x=2時(shí),y=﹣6.①求y與x之間的函數(shù)關(guān)系式;②當(dāng)y<3時(shí),求x的取值范圍.
(2)已知經(jīng)過(guò)點(diǎn)(﹣2,﹣2)的直線l1:y1=mx+n與直線l2:y2=﹣2x+6相交于點(diǎn)M(1,p)
①關(guān)于x,y的二元一次方程組的解為 ;②求直線l1的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=2+bx+c與x軸交于點(diǎn)A、B,交y軸于點(diǎn)C(0,﹣2),且拋物線對(duì)稱軸x=﹣2交x軸于點(diǎn)D,E是拋物線在第3象限內(nèi)一動(dòng)點(diǎn).
(1)求拋物線y1的解析式;
(2)將△OCD沿CD翻折后,O點(diǎn)對(duì)稱點(diǎn)O′是否在拋物線y1上?請(qǐng)說(shuō)明理由.
(3)若點(diǎn)E關(guān)于直線CD的對(duì)稱點(diǎn)E′恰好落在x軸上,過(guò)E′作x軸的垂線交拋物線y1于點(diǎn)F,①求點(diǎn)F的坐標(biāo);②直線CD上是否存在點(diǎn)P,使|PE﹣PF|最大?若存在,試寫(xiě)出|PE﹣PF|最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A在第一象限,點(diǎn)A,B關(guān)于y軸對(duì)稱.
(1)若A(1,3),寫(xiě)出點(diǎn)B的坐標(biāo);
(2)若A(a,b),且△AOB的面積為a2,求點(diǎn)B的坐標(biāo)(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長(zhǎng)度),線段CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是-10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)當(dāng)點(diǎn)B與點(diǎn)C相遇時(shí),點(diǎn)A、點(diǎn)D在數(shù)軸上表示的數(shù)分別為________;
(2)當(dāng)t為何值時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合;
(3)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),求出此時(shí)點(diǎn)B在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC<20°,三邊長(zhǎng)分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長(zhǎng)為a+c+5b,則翻折11次后,所得圖形的周長(zhǎng)為_____________.(結(jié)果用含有a,b,c的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某種電動(dòng)汽車(chē)的性能,某機(jī)構(gòu)對(duì)這種電動(dòng)汽車(chē)進(jìn)行抽檢,獲得如圖中不完整的統(tǒng)計(jì)圖,其中,,,表示 一次充電后行駛的里程數(shù)分別為,,,.
(1)問(wèn)這次被抽檢的電動(dòng)汽車(chē)共有幾輛?并補(bǔ)全條形統(tǒng)計(jì)圖;
電動(dòng)汽車(chē)一次充電后行駛里程數(shù)的條形統(tǒng)計(jì)圖
電動(dòng)汽車(chē)一次充電后行駛里程數(shù)的扇形統(tǒng)計(jì)圖
(2)求扇形統(tǒng)計(jì)圖中表示一次充電后行駛路為的扇形圓心角的度數(shù);
(3)估計(jì)這種電動(dòng)汽車(chē)一次充電后行駛的平均里程多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上一點(diǎn),以OA為半徑的⊙O與BC相切于點(diǎn)D,與AC相交于點(diǎn)E,與AB相交于點(diǎn)F,連接AD.
(1)求證:AD平分∠BAC;
(2)若點(diǎn)E為弧AD的中點(diǎn),探究線段BD,CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)E為弧AD的中點(diǎn),CD=,求弧DF與線段BD,BF所圍成的陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com