【題目】已知二次函數(shù)y=﹣x2+bx+c+1,
①當(dāng)b=1時(shí),求這個(gè)二次函數(shù)的對(duì)稱軸的方程;
②若c= b2﹣2b,問(wèn):b為何值時(shí),二次函數(shù)的圖象與x軸相切?
③若二次函數(shù)的圖象與x軸交于點(diǎn)A(x1 , 0),B(x2 , 0),且x1<x2 , 與y軸的正半軸交于點(diǎn)M,以AB為直徑的半圓恰好過(guò)點(diǎn)M,二次函數(shù)的對(duì)稱軸l與x軸、直線BM、直線AM分別交于點(diǎn)D、E、F,且滿足 = ,求二次函數(shù)的表達(dá)式.
【答案】解:①二次函數(shù)y=﹣x2+bx+c+1的對(duì)稱軸為x= ,
當(dāng)b=1時(shí), = ,
∴當(dāng)b=1時(shí),求這個(gè)二次函數(shù)的對(duì)稱軸的方程為x= .
②二次函數(shù)y=﹣x2+bx+c+1的頂點(diǎn)坐標(biāo)為( , ),
∵二次函數(shù)的圖象與x軸相切且c= b2﹣2b,
∴ ,解得:b=2+ 或b=2﹣ ,
∴b為2+ 或2﹣ 時(shí),二次函數(shù)的圖象與x軸相切.
③∵AB是半圓的直徑,
∴∠AMB=90°,
∴∠OAM+∠OBM=90°,
∵∠AOM=∠MOB=90°,
∴∠OAM+∠OMA=90°,
∴∠OMA=∠OBM,
∴△OAM∽△OMB,
∴ ,
∴OM2=OAOB,
∵二次函數(shù)的圖象與x軸交于點(diǎn)A(x1 , 0),B(x2 , 0),
∴OA=﹣x1 , OB=x2 , x1+x2 , =b,x1x2=﹣(c+1),
∵OM=c+1,
∴(c+1)2=c+1,
解得:c=0或c=﹣1(舍去),
∴c=0,OM=1,
∵二次函數(shù)的對(duì)稱軸l與x軸、直線BM、直線AM分別交于點(diǎn)D、E、F,且滿足 = ,
∴AD=BD,DF=4DE,
DF∥OM,
∴△BDE∽△BOM,△AOM∽△ADF,
∴ , ,
∴DE= ,DF= ,
∴ ×4,
∴OB=4OA,即x2=﹣4x1 ,
∵x1x2=﹣(c+1)=﹣1,
∴ ,解得: ,
∴b=﹣ +2= ,
∴二次函數(shù)的表達(dá)式為y=﹣x2+ x+1.
【解析】①二次函數(shù)y=﹣x2+bx+c+1的對(duì)稱軸為x= ,即可得出答案;②二次函數(shù)y=﹣x2+bx+c+1的頂點(diǎn)坐標(biāo)為( , ),y由二次函數(shù)的圖象與x軸相切且c= b2﹣2b,得出方程組 ,求出b即可;③由圓周角定理得出∠AMB=90°,證出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OAOB,由二次函數(shù)的圖象與x軸的交點(diǎn)和根與系數(shù)關(guān)系得出OA=﹣x1 , OB=x2 , x1+x2 , =b,x1x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,證明△BDE∽△BOM,△AOM∽△ADF,得出 , ,得出OB=4OA,即x2=﹣4x1 , 由x1x2=﹣(c+1)=﹣1,得出方程組 ,解方程組求出b的值即可.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的應(yīng)用,需要了解測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測(cè)點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測(cè)得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,求該電線桿PQ的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2 .
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= , OC△OA=;
(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;
(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點(diǎn)N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次世界魔方大賽吸引世界各地共600名魔方愛(ài)好者參加,本次大賽首輪進(jìn)行3×3階魔方賽,組委會(huì)隨機(jī)將愛(ài)好者平均分到20個(gè)區(qū)域,每個(gè)區(qū)域30名同時(shí)進(jìn)行比賽,完成時(shí)間小于8秒的愛(ài)好者進(jìn)入下一輪角逐;如圖是3×3階魔方賽A區(qū)域30名愛(ài)好者完成時(shí)間統(tǒng)計(jì)圖,求: ①A區(qū)域3×3階魔方愛(ài)好者進(jìn)入下一輪角逐的人數(shù)的比例(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
②若3×3階魔方賽各個(gè)區(qū)域的情況大體一致,則根據(jù)A區(qū)域的統(tǒng)計(jì)結(jié)果估計(jì)在3×3階魔方賽后進(jìn)入下一輪角逐的人數(shù).
③若3×3階魔方賽A區(qū)域愛(ài)好者完成時(shí)間的平均值為8.8秒,求該項(xiàng)目賽該區(qū)域完成時(shí)間為8秒的愛(ài)好者的概率(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在水域上建一個(gè)演藝廣場(chǎng),演藝廣場(chǎng)由看臺(tái)Ⅰ,看臺(tái)Ⅱ,三角形水域ABC,及矩形表演臺(tái)BCDE四個(gè)部分構(gòu)成(如圖),看臺(tái)Ⅰ,看臺(tái)Ⅱ是分別以AB,AC為直徑的兩個(gè)半圓形區(qū)域,且看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍,矩形表演臺(tái)BCDE 中,CD=10米,三角形水域ABC的面積為 平方米,設(shè)∠BAC=θ.
(1)求BC的長(zhǎng)(用含θ的式子表示);
(2)若表演臺(tái)每平方米的造價(jià)為0.3萬(wàn)元,求表演臺(tái)的最低造價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,EF∥AB,DE:EA=2:3,EF=4,則CD的長(zhǎng)為( )
A.
B.8
C.10
D.16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com