如圖,已知⊙O的直徑AB垂直于弦CD于E,連接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=,求CD的長;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(陰影部分)的面積(結果保留π).

【答案】分析:(1)首先根據(jù)銳角三角函數(shù)求得直角三角形ABC的兩條直角邊,再根據(jù)面積計算其斜邊上的高,進一步根據(jù)垂徑定理計算弦長;
(2)根據(jù)直角三角形的兩個銳角互余結合已知條件求得扇形所對的圓心角,進一步求其面積.
解答:解:(1)∵AB是⊙O的直徑,OD=5,
∴∠ADB=90°,AB=10,
在Rt△ABD中,sin∠BAD=,sin∠BAD=
,BD=6,
∴AD==8,
∵∠ADB=90°,AB⊥CD,
∴DE•AB=AD•BD,CE=DE,
∴DE×10=8×6,
∴DE=
∴CD=2DE=;

(2)∵AB是⊙O的直徑,AB⊥CD,
,
∴∠BAD=∠CDB,∠AOC=∠AOD,
∵AO=DO,
∴∠BAD=∠ADO,
∴∠CDB=∠ADO,
設∠ADO=4x,則∠CDB=4x.
由∠ADO:∠EDO=4:1,則∠EDO=x.
∵∠ADO+∠EDB+∠EDO=90°,
∴4x+4x+x=90°,
解得:x=10°,
∴∠AOD=180°-(∠OAD+∠ADO)=100°,
∴∠AOC=∠AOD=100°,
∴S扇形OAC=
點評:本題為圓的綜合題,綜合考查了解直角三角形、三角函數(shù)、陰影部分面積等相關知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、如圖,已知⊙O的直徑AB⊥弦CD于點E,下列結論中一定正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知半圓的直徑AB=4cm,點C、D是這個半圓的三等分點,則弦AC、AD和
CD
圍成的陰影部分面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,已知⊙O的直徑為10,P為⊙O內一點,且OP=4,則過點P且長度小于6的弦共有
0
條.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的直徑AB與弦AC的夾角∠CAB=27°,過點C作⊙O的切線交AB延長線于點D,則∠ADC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•邢臺二模)如圖,已知⊙O的直徑AB與弦AC的夾角為31°,過C點的切線PC與AB的延長線交于點P,則∠P等于( 。

查看答案和解析>>

同步練習冊答案