如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C(0,4),頂點為(1,5).
(1)求該拋物線的函數(shù)關(guān)系式;
(2)連接AC、BC,求△ABC的面積.
分析:(1)由條件直接設(shè)出拋物線的頂點式y(tǒng)=a(x-1)2+5,把C點的坐標(biāo)代入解析式就可以求出a值,從而求出解析式.
(2)連接AC、BC,利用解析式求出A、B的坐標(biāo),從而求出AB的值,由三角形的面積公式就可以求出△ABC的面積.
解答:解:(1)設(shè)拋物線的解析式為y=a(x-1)2+5,由題意,得
4=a+5,
∴a=-1,
∴拋物線的解析式為:y=-(x-1)2+5,
(2)連接AC、BC,如圖.
∵拋物線的解析式為:y=-(x-1)2+5,
∴y=0時,則0=-(x-1)2+5,
∴x1=
5
+1,x2=-
5
+1,
∴A(-
5
+1,0),B(
5
+1,0),
∴AB=2
5

∴S△ABC=
2
5
×4
2
=4
5
點評:本題考查了運用待定系數(shù)法求拋物線的解析式,二次函數(shù)圖象上點的坐標(biāo)特征,三角形的面積.拋物線與x軸的交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案