如圖,數(shù)學(xué)公式,試說明:∠BAD=∠CAE.

證明:∵,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAD=∠CAE.
分析:根據(jù)如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似,可以證得∠ABC∽△ADE,根據(jù)相似三角形的對應(yīng)角相等,可證得解.
點(diǎn)評:此題考查了相似三角形的判定和性質(zhì),①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.相似三角形的對應(yīng)邊成比例,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)《圖形的相似》后,我們可以借助探索兩個直角三角形全等的條件所獲得經(jīng)驗,繼續(xù)探索兩個直角三角形相似的條件.
(1)“對與兩個直角三角形,滿足一邊一銳角對應(yīng)相等,或兩直角邊對應(yīng)相等,兩個直角三角形全等”.精英家教網(wǎng)類似地你可以得到:“滿足
 
,或
 
,兩個直角三角形相似”.
(2)“滿足斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等”,類似地你可以得到“滿足
 
的兩個直角三角形相似”.
請結(jié)合下列所給圖形,寫出已知,并完成說理過程.
已知:如圖,
 

試說明Rt△ABC∽Rt△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1、圖2、圖3,在矩形ABCD中,E是BC邊上的一點(diǎn),以AE為邊作平行四邊形AEFG,使點(diǎn)D在AE的對邊FG上,
(1)如圖1,試說明:平行四邊形AEFG的面積與矩形ABCD的面積相等;
(2)如圖2,若平行四邊形AEFG是矩形,EF與CD交于點(diǎn)P,試說明:A、E、P、D四點(diǎn)在同一個圓上;
(3)如圖3,若AB<BC,平行四邊形AEFG是正方形,且D是FG的中點(diǎn),EF交CD于點(diǎn)P,連接PA,判斷以FG為直徑的圓與直線PA的位置關(guān)系,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:△ABC中,D為BC上一動點(diǎn),BE⊥AD延長線于E,CF⊥AD于F,M是BC的中點(diǎn),當(dāng)D與M重合如圖②時,試說明ME=MF.當(dāng)D運(yùn)動到如圖①位置時,這個結(jié)論是否成立,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索與研究:
在△ABC中,∠ABC=90°,分別以邊AB、BC、CA向△ABC外作正方形ABHI、正方形BCGF、正方形CAED,連接GD、AG、BD.
(1)如圖甲,求證:AG=BD.
(2)如圖乙,試說明:S△ABC=S△CDG
(提示:正方形的四條邊相等,四個角均為直角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如圖1,試說明:△ABD≌△AEC;
(2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
①試求:∠EOB的度數(shù);
②將△AEC繞點(diǎn)A逆時針旋轉(zhuǎn)α度(0°<α<180°),問當(dāng)α為多少度時,直線CE分別與△ABD的三邊所在的直線垂直?(請直接寫出答案).
(3)如圖2將△AEC繞點(diǎn)A順時針旋轉(zhuǎn)后得到△ABD,并使點(diǎn)D,E,A三點(diǎn)在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案