【題目】甲、乙兩人加工同一種機器零件,甲比乙每小時多加工10個零件,甲加工150個零件所用的時間與乙加工120個零件所用時間相等
(1)求甲、乙兩人每小時各加工多少個機器零件?

【答案】
(1)

解:設(shè)乙每小時加工機器零件x個,則甲每小時加工機器零件(x+10)個,根據(jù)題意得:

解得x=40,

經(jīng)檢驗,x=40是原方程的解,

x+10=40+10=50.

答:甲每小時加工50個零件,乙每小時加工40個零件。

;

解:設(shè)乙每小時加工機器零件x個,則甲每小時加工機器零件(x+10)個,根據(jù)題意得:

解得x=40,

經(jīng)檢驗,x=40是原方程的解,

x+10=40+10=50.

答:甲每小時加工50個零件,乙每小時加工40個零件。

;解:設(shè)乙每小時加工機器零件x個,則甲每小時加工機器零件(x+10)個,根據(jù)題意得: ,

解得x=40,

經(jīng)檢驗,x=40是原方程的解,

x+10=40+10=50.

答:甲每小時加工50個零件,乙每小時加工40個零件。


【解析】根據(jù)“甲加工150個零件所用的時間與乙加工120個零件所用時間相等”可得出相等關(guān)系,從而只需表示出他們各自的時間就可以了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上.

(1)計算AC2+BC2的值等于   ;

(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個平行四邊形ABEF,使得該平行四邊形的面積等于16;

(3)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個矩形ABMN,使得該矩形的面積等于AC2+BC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點C的坐標(biāo)為(4,0),一次函數(shù)的圖像分別交x軸、y軸于點A、點B.

⑴ 若點D是直線AB在第一象限內(nèi)的點,且BDBC,試求出點D的坐標(biāo).

⑵ 在⑴的條件下,若點Q是坐標(biāo)軸上的一個動點,試探索在第一象限是否存在另一個點P,使得以B、D、P、Q為頂點的四邊形是菱形BD為菱形的一邊)?若存在,請直接寫出P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=4,M是AD的中點,點E是線段AB上一動點,連接EM并延長交線段CD的延長線于點F.

(1)如圖1,求證:AE=DF;
(2)如圖2,若AB=2,過點M作 MG⊥EF交線段BC于點G,判斷△GEF的形狀,并說明理由;
(3)如圖3,若AB= ,過點M作 MG⊥EF交線段BC的延長線于點G.
①直接寫出線段AE長度的取值范圍;
②判斷△GEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣1)2+| ﹣1|+2sin45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正ABC內(nèi)一點,OA=3,OB=4OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①BO′A可以由BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點OO′的距離為4;③∠AOB=150°S四邊形AOBO′=6+3;SAOC+SAOB=6+.其中正確的結(jié)論是

A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】準(zhǔn)備一張矩形紙片,按如圖操作:將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.

1)、求證:四邊形BFDE是平行四邊形;

2)、若四邊形BFDE是菱形, AB2,求菱形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(徐州中考)如圖,在ABC中,∠ABC90°,BAC60°,ACD是等邊三角形,EAC的中點,連接BE并延長交DC于點F,求證:

(1)ABE≌△CFE;

(2)四邊形ABFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF、BF,EF與對角線AC交于點O,且BE=BF,BEF=2BAC。

(1)求證;OE=OF;(2)若BC=,求AB的長。

查看答案和解析>>

同步練習(xí)冊答案