二次函數(shù)y=-x2+2x,當x    時y<0;且y隨x的增大而減。
【答案】分析:根據圖象與x軸的交點及開口方向,判斷y<0的條件;根據對稱軸及開口方向判斷y隨x的增大而減小的條件,綜合以上兩個條件,得出本題的結論.
解答:解:∵二次函數(shù)y=-x2+2x的對稱軸為x=2,與x軸的交點為(0,0),(4,0),
∴當x<0或x>4時,y<0;當x>2時,y隨x的增大而減;
綜上可知,當x>4時,y<0,y隨x的增大而減小.
點評:此題考查了學生的綜合應用能力,解此題的關鍵是利用數(shù)形結合的思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•槐蔭區(qū)一模)已知二次函數(shù)y=x2-2x-3,當自變量x取兩個不同的值x1、x2時函數(shù)值相等,則當自變量x取
x1+x22
時的函數(shù)值與x=
1
1
時的函數(shù)值相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=x2+x-2的圖象與x軸交點的橫坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沛縣一模)在二次函數(shù)y=-x2+bx+c中,函數(shù)y與自變量x的部分對應值如下表:
x -3 -2 -1 1 2 3 4 5 6
y -14 -7 -2 2 m n -7 -14 -23
則m、n的大小關系為 m
n.(填“<”,“=”或“>”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•寶山區(qū)一模)二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C
(1)求m的值和點B的坐標
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=-x2-2x+a的圖象與x軸有且只有一個公共點.則二次函數(shù)y=-x2-2x+a圖象的頂點坐標為
(-1,0)
(-1,0)

查看答案和解析>>

同步練習冊答案