如圖,已知在△ABC中,AB=AC,AB的垂直平分線(xiàn)DE交AC于點(diǎn)E,CE的垂直平分線(xiàn)正好經(jīng)過(guò)點(diǎn)B,與AC相交于點(diǎn)F,求∠A的度數(shù).

解:∵△ABC是等腰三角形,
∴∠ABC=∠C=①,
∵DE是線(xiàn)段AB的垂直平分線(xiàn),
∴∠A=∠ABE,
∵CE的垂直平分線(xiàn)正好經(jīng)過(guò)點(diǎn)B,與AC相交于點(diǎn)可知△BCE是等腰三角形,
∴BF是∠EBC的平分線(xiàn),
(∠ABC-∠A)+∠C=90°,即(∠C-∠A)+∠C=90°②,
①②聯(lián)立得,∠A=36°.
故∠A=36°.
分析:先根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠C,再由垂直平分線(xiàn)的性質(zhì)得出∠A=∠ABE,根據(jù)CE的垂直平分線(xiàn)正好經(jīng)過(guò)點(diǎn)B,與AC相交于點(diǎn)可知△BCE是等腰三角形,故BF是∠EBC的平分線(xiàn),故(∠ABC-∠A)+∠C=90°,把所得等式聯(lián)立即可求出∠A的度數(shù).
點(diǎn)評(píng):本題考查的是線(xiàn)段垂直平分線(xiàn)的性質(zhì)及等腰三角形的性質(zhì),解答此類(lèi)問(wèn)題時(shí)往往用到三角形的內(nèi)角和為180°這一隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線(xiàn),AB=9cm,AC=7cm,BC=8m,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線(xiàn),AB=BC,點(diǎn)P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線(xiàn).
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線(xiàn)交于點(diǎn)P.當(dāng)∠A=70°時(shí),則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說(shuō)明CD2=AD•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案