計(jì)算:-32×(1999-3888)0÷3-2+|-27|

解:原式=-9×1÷+27=-54.
分析:分別進(jìn)行乘方、零指數(shù)冪負(fù)整數(shù)指數(shù)冪、絕對(duì)值等運(yùn)算,然后按照實(shí)數(shù)的運(yùn)算法則計(jì)算即可.
點(diǎn)評(píng):本題考查了實(shí)數(shù)的運(yùn)算,涉及了乘方、零指數(shù)冪負(fù)整數(shù)指數(shù)冪、絕對(duì)值等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:-32-
48
+(5-π)0+2sin60°+|-
1
9
|

(2)化簡(jiǎn):(x-y)(x+y)-(x-y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

大家知道,因式分解是代數(shù)中一種重要的恒等變形.應(yīng)用因式分解的思想方法有時(shí)能取得意想不到的效果,如化簡(jiǎn):
1
22
+
12×2
=
22
-
12×2
(
22
+
12×2)
(
22
-
12×2
)
=
22
-
12×2
22-12×2
=1-
2
2
1
32
+
22×3
=
32
-
22×3
(
32
+
22×3
)(
32
-
22×3
)
=
32
-
22×3
32-22×3
=
2
2
-
3
3

(1)從以上化簡(jiǎn)的結(jié)果中找出規(guī)律,直接寫(xiě)出用n(n是正整數(shù))表示上面規(guī)律的式子.
(2)根據(jù)以上規(guī)律,計(jì)算
1
22
+
12×2
+
1
32
+
22×3
+
1
42
+
32×4
+…+
1
102
+
92×10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

從1開(kāi)始,連續(xù)的奇數(shù)相加,和的情況如下:1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52
(1)請(qǐng)你推算,從1開(kāi)始,n個(gè)連續(xù)奇數(shù)相加,它們的和S的公式是什么?
(2)計(jì)算1+3+5+…+19的和;
(3)計(jì)算11+13+15+…+99的和;
(4)已知:1+3+5+7+…+(2n-1)=225,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

從1開(kāi)始,連續(xù)的奇數(shù)相加,和的情況如下:

1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52
(1)請(qǐng)你推算,從1開(kāi)始,n個(gè)連續(xù)奇數(shù)相加,它們的和S的公式是什么?
(2)計(jì)算1+3+5+…+19的和;
(3)計(jì)算11+13+15+…+25的和;
(4)已知:1+3+5+7+…+(2n-1)=225,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

大家知道,因式分解是代數(shù)中一種重要的恒等變形.應(yīng)用因式分解的思想方法有時(shí)能取得意想不到的效果,如化簡(jiǎn):
1
22
+
12×2
=
22
-
12×2
(
22
+
12×2)
(
22
-
12×2
)
=
22
-
12×2
22-12×2
=1-
2
2
1
32
+
22×3
=
32
-
22×3
(
32
+
22×3
)(
32
-
22×3
)
=
32
-
22×3
32-22×3
=
2
2
-
3
3

(1)從以上化簡(jiǎn)的結(jié)果中找出規(guī)律,直接寫(xiě)出用n(n是正整數(shù))表示上面規(guī)律的式子.
(2)根據(jù)以上規(guī)律,計(jì)算
1
22
+
12×2
+
1
32
+
22×3
+
1
42
+
32×4
+…+
1
102
+
92×10

查看答案和解析>>

同步練習(xí)冊(cè)答案