【題目】如圖,等邊三角形ABC的邊長為6,點(diǎn)EAC邊上一點(diǎn),AE=2,作DEAC于點(diǎn)EAB于點(diǎn)D,點(diǎn)FBC邊上且BF=BD.連接EFCD交于點(diǎn)H,則DH的長為(

A.B. C. D.

【答案】B

【解析】

根據(jù)等邊三角形的性質(zhì)可得∠B=A=60°,根據(jù)DEACBF=BD可得∠AED=90°,根據(jù)勾股定理可得EF=4,DC=,再利用三角形相似求出CH,即可得到結(jié)果;

∵等邊三角形ABC的邊長為6,DEAC;

∴∠B=A=C=60°, AED=90°.

∴∠ADE=30°,

∴在RtADE中,

AD=2AE=4,DE=,

又∵BF=BD,

BD=DF=BF=6-4=2.

EC=CF =4EFC為等邊三角形,

EF=EC=4,∠EFC=60°=B,

ABEF

∴∠DEH=ADE=30°,可得到∠DEC=90°.

,

ABEF,

CEH∽△CAD

,

DH=DC-CH=.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長為米,寬為米的長方形地塊,規(guī)劃部門計(jì)劃將陰影部分進(jìn)行綠化,中間將修建一座雕像,左右兩邊修兩條寬為米的道路.().

1試用含的代數(shù)式表示綠化的面積是多少平方米?

假設(shè)陰影部分可以拼成一個矩形.請你求出所拼矩形相鄰兩邊的長:如果要使所拼矩形面積最大,求滿足的關(guān)系式;

2)若,請求出綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市少年宮為小學(xué)生開設(shè)了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學(xué)生對這四類興趣班的喜愛情況,對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表

興趣班

頻數(shù)

頻率

合計(jì)

請你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問題:

1)統(tǒng)計(jì)表中的_____ ;

2)根據(jù)調(diào)查結(jié)果,請你估計(jì)該市名小學(xué)生中最喜歡“繪畫”興趣班的人數(shù);

3)王強(qiáng)和李昊選擇參加興趣班,若王強(qiáng)從三類興趣班中隨機(jī)選取一類,李吳從三類興趣班中隨機(jī)選取一類,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一類興趣班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】早在古羅馬時(shí)代,傳說亞歷山大城有一位精通數(shù)學(xué)和物理的學(xué)者,名叫海倫.一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解的問題.

將軍每天從軍營A出發(fā),先到河邊飲馬,然后再去河岸同側(cè)的軍營B開會,應(yīng)該怎樣走才能使路程最短?這個問題的答案并不難,據(jù)說海倫略加思索就解決了它.從此以后,這個被稱為將軍飲馬的問題便流傳至今.大數(shù)學(xué)家海倫曾用軸對稱的方法巧妙地解決了這個問題.

如圖2,作B關(guān)于直線l的對稱點(diǎn)B′,連結(jié)AB′與直線l交于點(diǎn)C,點(diǎn)C就是所求的位置.

證明:如圖3,在直線l上另取任一點(diǎn)C′,連結(jié)AC′,BC′,B′C′,

∵直線l是點(diǎn)B,B′的對稱軸,點(diǎn)C,C′l上,

CB=CB′,C′B=C′B′,

AC+CB=AC+   =   

在△AC′B′中,

AB′AC′+C′B′

AC+CBAC′+C′B′AC+CB最。

本問題實(shí)際上是利用軸對稱變換的思想,把A,B在直線同側(cè)的問題轉(zhuǎn)化為在直線的兩側(cè),從而可利用兩點(diǎn)之間線段最短,即三角形兩邊之和大于第三邊的問題加以解決(其中CAB′l的交點(diǎn)上,即AC、B′三點(diǎn)共線).本問題可歸納為求定直線上一動點(diǎn)與直線外兩定點(diǎn)的距離和的最小值的問題的數(shù)學(xué)模型.

1.簡單應(yīng)用

1)如圖4,在等邊△ABC中,AB=6ADBC,EAC的中點(diǎn),MAD上的一點(diǎn),求EM+MC的最小值

借助上面的模型,由等邊三角形的軸對稱性可知,BC關(guān)于直線AD對稱,連結(jié)BM,EM+MC的最小值就是線段   的長度,則EM+MC的最小值是   ;

2)如圖5,在四邊形ABCD中,∠BAD=130°,∠B=D=90°,在BCCD上分別找一點(diǎn)M、N當(dāng)△AMN周長最小時(shí),∠AMN+ANM=   °

2.拓展應(yīng)用

如圖6,是一個港灣,港灣兩岸有A、B兩個碼頭,∠AOB=30°OA=1千米,OB=2千米,現(xiàn)有一艘貨船從碼頭A出發(fā),根據(jù)計(jì)劃,貨船應(yīng)先?OBC處裝貨,再?OAD處裝貨,最后到達(dá)碼頭B.怎樣安排兩岸的裝貨地點(diǎn),使貨船行駛的水路最短?請畫出最短路線并求出最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一前夕,某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價(jià)比B品牌服裝每套進(jìn)價(jià)多25元,用2000元購進(jìn)A種服裝數(shù)量是用750元購進(jìn)B種服裝數(shù)量的2倍.

A、B兩種品牌服裝每套進(jìn)價(jià)分別為多少元?

該服裝A品牌每套售價(jià)為130元,B品牌每套售價(jià)為95元,服裝店老板決定,購進(jìn)B品牌服裝的數(shù)量比購進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進(jìn)A品牌的服裝多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:對角線互相垂直圓內(nèi)接四邊形,自對角線的交點(diǎn)向一邊作垂線,其延長線必平分對邊.

要求:(1)在給出的圓內(nèi)接四邊形作出PEBC于點(diǎn)E,并延長EPAD交于點(diǎn)F,不寫作法,保留作圖痕跡

2)利用(1)中所作的圖形寫出已知、求證和證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自從開展線上學(xué)習(xí)活動后,某中學(xué)體育老師為了解該校九年級一班學(xué)生在家進(jìn)行體育鍛煉情況.決定開設(shè):毽子;:籃球;:跑步;:跳繩四種活動項(xiàng)目,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,進(jìn)行隨機(jī)電話訪談部分學(xué)生,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖,請結(jié)合圖中信息解答下列問題:

(1)該校本次調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)請將兩個統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在本次調(diào)查的學(xué)生中隨機(jī)抽取1人,則這個人喜歡跳繩的概率有多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是十堰市的三個旅游景點(diǎn):丹江口的武當(dāng)山、房縣的野人洞、鄖西縣的五龍河的部分門票價(jià)格表.某單位在國慶長假前期給每人購買了一張門票,現(xiàn)將購買門票的情況繪制成如圖所示的柱狀統(tǒng)計(jì)圖.

景點(diǎn)

標(biāo)價(jià)(元/張)

武當(dāng)山

200

野人洞

五龍河

80

請依據(jù)上表、圖回答下列問題:

1)去武當(dāng)山旅游的門票有________張,購買去野人洞旅游的門票占所有門票張數(shù)的____________

2)若該單位采取隨機(jī)抽取的方式把門票分配給員工,在看不到門票的前提下,每人抽取一張(所有門票形狀、大小、顏色等完全相同且充分洗勻).問員工小紅抽取去武當(dāng)山的門票的概率是___________

3)若購買去五龍河的總款數(shù)占全部款數(shù)的.試求出每張野人洞門票的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】孝敬勤勞是中華民族的傳統(tǒng)美德,疫情期間同學(xué)們在家里經(jīng)常幫助父母做一些力所能及的家務(wù).學(xué)校隨機(jī)調(diào)查了部分同學(xué)疫情期間在家做家務(wù)的總時(shí)間,設(shè)被調(diào)查的每位同學(xué)疫情期間在家做家務(wù)的總時(shí)間為小時(shí),現(xiàn)將做家務(wù)的總時(shí)間分為五個類別:,,,.并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:

請你根據(jù)統(tǒng)計(jì)圖中提供的信息回答下列問題:

1)本次共調(diào)查了多少名學(xué)生?

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校共有1000名學(xué)生,請你估計(jì)該校疫情期間在家做家務(wù)的總時(shí)間不低于20小時(shí)的學(xué)生有多少名.

查看答案和解析>>

同步練習(xí)冊答案