已知關(guān)于x的方程x2-2(a+1)x+a2+2=0有兩個(gè)實(shí)數(shù)根x1,x2
(1)求a的取值范圍;
(2)若(x1+1)(x2+1)=8,求a的值.
分析:(1)根據(jù)判別式的意義得到△=4(a+1)2-4(a2+2)≥0,然后解不等式即可;
(2)根據(jù)根與系數(shù)的關(guān)系得x1+x2=2(a+1),x1•x2=a2+2,再把(x1+1)(x2+1)=8整理得x1•x2+x1+x2+1=8,所以a2+2+2(a+1)+1=8,解關(guān)于a的方程,然后根據(jù)(1)中的條件確定a的值.
解答:解:(1)根據(jù)題意得△=4(a+1)2-4(a2+2)≥0,
解得a≥
1
2

(2)根據(jù)題意得x1+x2=2(a+1),x1•x2=a2+2,
∵(x1+1)(x2+1)=8,
∴x1•x2+x1+x2+1=8,
∴a2+2+2(a+1)+1=8,
整理得a2+2a-3=0,解得a1=-3,a2=1,
∵a≥
1
2

∴a=1.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了一元二次方程的根與系數(shù)的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個(gè)根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng))已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無(wú)論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長(zhǎng)為a=6,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案