【題目】如圖,已知分別是的高和中線,,,,.
求:(1)的長(zhǎng);
(2)的面積;
(3)和的周長(zhǎng)的差.
【答案】(1) 的長(zhǎng)度為;(2) 的面積是;(3) 和的周長(zhǎng)的差是
【解析】
(1)利用“面積法”來求線段AD的長(zhǎng)度;
(2)根據(jù)△AEC與△ABE是等底同高的兩個(gè)三角形,它們的面積相等,求解即可.
(3)由于AE是中線,那么BE=CE,于是△ACE的周長(zhǎng)-△ABE的周長(zhǎng)=AC+AE+CE-(AB+BE+AE),化簡(jiǎn)可得△ACE的周長(zhǎng)-△ABE的周長(zhǎng)=AC-AB,易求其值.
(1)∵,是邊上的高,
∴,
∴,
即的長(zhǎng)度為;
(2)∵是直角三角形,,
∴,
又∵是邊的中線,
∴,
∴,即,
∴,
∴的面積是;
(3)∵為邊上的中線,∴,
∴的周長(zhǎng)-的周長(zhǎng),
即和的周長(zhǎng)的差是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于兩點(diǎn),與直線交于點(diǎn)C(4,2).
(1)點(diǎn)A坐標(biāo)為( , ),B為( , );
(2)在線段上有一點(diǎn)E,過點(diǎn)E作y軸的平行線交直線于點(diǎn)F,設(shè)點(diǎn)E的橫坐標(biāo)為m,當(dāng)m為何值時(shí),四邊形是平行四邊形;
(3)若點(diǎn)P為x軸上一點(diǎn),則在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得四個(gè)點(diǎn)能構(gòu)成一個(gè)菱形.若存在,求出所有符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖,不寫作法,但要求保留作圖痕跡.
(1)已知:線段a和∠α,如圖.求作:△ABC,使得AB=a,∠ABC=∠α.∠BAC=2∠α.
(2)在(1)的條件下,若∠ABC=360,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知n邊形的內(nèi)角和θ=(n﹣2)×180°.
(1)甲同學(xué)說,θ能取900°;而乙同學(xué)說,θ也能取800°.甲、乙的說法對(duì)嗎?若對(duì),求出邊數(shù)n.若不對(duì),說明理由;
(2)若n邊形變?yōu)椋?/span>n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了540°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)給定的條件,求一次函數(shù)的表達(dá)式.
(1)已知一次函數(shù)的圖象如圖所示,求此一次函數(shù)的表達(dá)式,并判斷點(diǎn)(6,5)是否在此函數(shù)圖象上;
(2)已知直線y=kx+b平行于直線y=3x+4,且過點(diǎn)(1,2),求此直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=﹣x+4與x軸相交于點(diǎn)A,與直線y=x交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo).
(2)動(dòng)點(diǎn)F從原點(diǎn)O出發(fā),以每秒1個(gè)單位的速度在線段OA上向點(diǎn)A作勻速運(yùn)動(dòng),連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PFA的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式.
(3)若點(diǎn)M是y軸上任意一點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)任意一點(diǎn),若以O、M、N、P為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(﹣1,m)、B(n,﹣1)兩點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo);
(2)求出這個(gè)一次函數(shù)的表達(dá)式;
(3)根據(jù)圖象,寫出使一次函數(shù)值大于反比例函數(shù)值的x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn),分別在邊,上,有下列條件:
①;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com