【題目】已知:如圖,直線(xiàn)y=﹣x+4與x軸相交于點(diǎn)A,與直線(xiàn)y=x交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo).
(2)動(dòng)點(diǎn)F從原點(diǎn)O出發(fā),以每秒1個(gè)單位的速度在線(xiàn)段OA上向點(diǎn)A作勻速運(yùn)動(dòng),連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PFA的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式.
(3)若點(diǎn)M是y軸上任意一點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)任意一點(diǎn),若以O、M、N、P為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).
【答案】(1)P點(diǎn)坐標(biāo)(2,2);(2)S=4﹣t(0≤t<4);(3)N點(diǎn)坐標(biāo)為N1(2,2﹣4),N2(2,2+4),N3(﹣2,2),N4(2,).
【解析】
(1)聯(lián)立兩直線(xiàn)的解析式求出x、y的值即可得出P點(diǎn)坐標(biāo);
(2)先求出A點(diǎn)坐標(biāo),再根據(jù)三角形的面積公式即可得出結(jié)論;
(3)分OP為菱形的邊與對(duì)角線(xiàn)兩種情況進(jìn)行討論.
解:(1)∵由已知,
解得,
∴P點(diǎn)坐標(biāo)(2,2);
(2)∵直線(xiàn)y=﹣x+4中,當(dāng)y=0時(shí),x=4,
∴OA=4,
∴S=(OA﹣t)×2=(4﹣t)×2=4﹣t(0≤t<4);
(3)如圖,當(dāng)OP為平行四邊形的邊時(shí),
∵P(2,2),
∴OP==4,
∴N1(2,2﹣4),N2(2,2+4),N3(﹣2,2);
當(dāng)OP為對(duì)角線(xiàn)時(shí),設(shè)M(0,a),
則MP=a,即22+(2﹣a)2=a2,解得a=,
∴N點(diǎn)的縱坐標(biāo)=2﹣=,
∴N4(2,).
綜上所示,N點(diǎn)坐標(biāo)為N1(2,2﹣4),N2(2,2+4),N3(﹣2,2),N4(2,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題①如果a,b,c為一組勾股數(shù),那么4a,4b,4c仍是勾股數(shù);②如果三角形的三個(gè)內(nèi)角的度數(shù)比是3:4:5,那么這個(gè)三角形是直角三角形;③如果一個(gè)三角形的三邊是12、25、21,那么此三角形必是直角三角形;④一個(gè)等腰直角三角形的三邊是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正確的是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,高AD、BE相交于點(diǎn)O,AE=BE,BC=5,且BD=CD.
(1)①求證:△AOE≌△BCE;②求線(xiàn)段AO的長(zhǎng).
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿線(xiàn)段OA以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿射線(xiàn)BC以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△POQ的面積為S,請(qǐng)用含t的式子表示S,并直接寫(xiě)出t相應(yīng)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知分別是的高和中線(xiàn),,,,.
求:(1)的長(zhǎng);
(2)的面積;
(3)和的周長(zhǎng)的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】包裝廠有42名工人,每人平均每天可以生產(chǎn)圓形鐵片120片或長(zhǎng)方形鐵片80片.為了每天生產(chǎn)的產(chǎn)品剛好制成一個(gè)密封的圓桶,應(yīng)該分配多少名工人生產(chǎn)圓形鐵片,多少名工人生產(chǎn)長(zhǎng)方形鐵片?設(shè)應(yīng)分配x名工人生產(chǎn)長(zhǎng)方形鐵片,(42-x)名工人生產(chǎn)圓形鐵片,則下列所列方程正確的是( )
A. 120x=2×80(42-x) B. 80x=120(42-x)
C. 2×80x=120(42-x) D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+5與x軸交于點(diǎn)A(1,0)和點(diǎn)B(5,0),頂點(diǎn)為M.點(diǎn)C在x軸的負(fù)半軸上,且AC=AB,點(diǎn)D的坐標(biāo)為(0,3),直線(xiàn)l經(jīng)過(guò)點(diǎn)C、D.
(1)求拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)P是直線(xiàn)l在第三象限上的點(diǎn),聯(lián)結(jié)AP,且線(xiàn)段CP是線(xiàn)段CA、CB的比例中項(xiàng),
求tan∠CPA的值;
(3)在(2)的條件下,聯(lián)結(jié)AM、BM,在直線(xiàn)PM上是否存在點(diǎn)E,使得∠AEM=∠AMB.若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖1),折疊紙面.
(1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣4表示的點(diǎn)與 表示的點(diǎn)重合;
(2)若﹣2表示的點(diǎn)與8表示的點(diǎn)重合,回答以下問(wèn)題:
①16表示的點(diǎn)與 表示的點(diǎn)重合;
②如圖2,若數(shù)軸上A、B兩點(diǎn)之間的距離為2018(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,則A、B兩點(diǎn)表示的數(shù)分別是 、 .
(3)如圖3,若m和n表示的點(diǎn)C和點(diǎn)D經(jīng)折疊后重合,(m>n>0),現(xiàn)數(shù)軸上P、Q兩點(diǎn)之間的距離為a(P在Q的左側(cè)),且P、Q兩點(diǎn)經(jīng)折疊后重合,求P、Q兩點(diǎn)表示的數(shù)分別是多少?(用含m,n,a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“作一個(gè)角等于30°”的尺規(guī)作圖過(guò)程.
作法:如圖,(1)作射線(xiàn)AD;
(2)在射線(xiàn)AD上任意取一點(diǎn)O(點(diǎn)O不與點(diǎn)A重合);
(3)以點(diǎn)O為圓心,OA為半徑作⊙O,交射線(xiàn)AD于點(diǎn)B;
(4)以點(diǎn)B為圓心,OB為半徑作弧,交⊙O于點(diǎn)C;
(5)作射線(xiàn)AC.
∠DAC即為所求作的30°角.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,⊙O過(guò)正方形ABCD的頂點(diǎn)A、D且與邊BC相切于點(diǎn)E,分別交AB、DC于點(diǎn)M、N.動(dòng)點(diǎn)P在⊙O或正方形ABCD的邊上以每秒一個(gè)單位的速度做連續(xù)勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為x,圓心O與P點(diǎn)的距離為y,圖2記錄了一段時(shí)間里y與x的函數(shù)關(guān)系,在這段時(shí)間里P點(diǎn)的運(yùn)動(dòng)路徑為( )
A. 從D點(diǎn)出發(fā),沿弧DA→弧AM→線(xiàn)段BM→線(xiàn)段BC
B. 從B點(diǎn)出發(fā),沿線(xiàn)段BC→線(xiàn)段CN→弧ND→弧DA
C. 從A點(diǎn)出發(fā),沿弧AM→線(xiàn)段BM→線(xiàn)段BC→線(xiàn)段CN
D. 從C點(diǎn)出發(fā),沿線(xiàn)段CN→弧ND→弧DA→線(xiàn)段AB
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com