如圖,在平面直角坐標系中,四邊形OABC是梯形,OA∥BC,點A的坐標為(6,0),點B的坐標為(3,4),點C在y軸的正半軸上.動點M在OA上運動,從O點出發(fā)到A點;動點N在AB上運動,從A點出發(fā)到B點.兩個動點同時出發(fā),速度都是每秒1個單位長度,當其中一個點到達終點時,另一個點也隨即停止,設兩個點的運動時間為t(秒).
(1)求線段AB的長;當t為何值時,MN∥OC;
(2)設△CMN的面積為S,求S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;S是否有最小值?若有最小值,最小值是多少?
(3)連接AC,那么是否存在這樣的t,使MN與AC互相垂直?若存在,求出這時的t值;若不存在,請說明理由.

【答案】分析:(1)求線段AB的長可通過構建直角三角形進行求解.過B作BD⊥OA于D,那么AD=3,BD=4,根據(jù)勾股定理即可求出AB的長.
如果MN∥OC,那么△AMN∽△ABD,可的關于AN,AB,AM,AD的比例關系,其中AN=t,AM=6-t,AD=3,AB=5,由此可求出t的值.
(2)由于三角形CMN的面積無法直接求出,因此可用其他圖形的面積的“和,差”關系來求.△CMN的面積=梯形AOCB的面積-△OCM的面積-△AMN的面積-△CBN的面積.
可據(jù)此來得出S,t的函數(shù)關系式.然后根據(jù)函數(shù)的性質(zhì)即可得出S的最小值.
(3)易得△NME∽△ACO,利用相似三角形的對應邊成比例得出的等量關系即可得出此時t的值.
解答:解:(1)過點B作BD⊥OA于點D,
則四邊形CODB是矩形,
BD=CO=4,OD=CB=3,DA=3.
在Rt△ABD中,AB=
當MN∥OC時,MN∥BD,
∴△AMN∽△ADB,
∵AN=OM=t,AM=6-t,AD=3,
,
即t=(秒).

(2)過點N作NE⊥x軸于點E,交CB的延長線于點F,
∵NE∥BD,
∴△AEN∽△ADB,
,EN=t.
∵EF=CO=4,
∴FN=4-t.
∵S=S梯形OABC-S△COM-S△MNA-S△CBN
∴S=CO(OA+CB)-CO•OM-AM•EN-CB•FN,
=×4×(6+3)-×4t-×(6-t)×t-×3×(4-t).
即S=t2-t+12(0≤t≤5).
由S=t2-t+12,
得S=(t-4)2+
∴當t=4時,S有最小值,且S最小=

(3)設存在點P使MN⊥AC于點P
由(2)得AE=t   NE=t
∴ME=AM-AE=6-t-t=6-t,
∵∠MPA=90°,
∴∠PMA+∠PAM=90°,
∵∠PAM+∠OCA=90°,
∴∠PMA=∠OCA,
∴△NME∽△ACO
∴NE:OA=ME:OC
=
 解得t=
∴存在這樣的t,且t=
點評:本題結合了梯形的性質(zhì)考查了二次函數(shù)的綜合應用,利用數(shù)形結合的思想進行求解是解題的基本思路.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案