【題目】如圖,在正方形ABCD中,O是對(duì)角線的交點(diǎn),過(guò)點(diǎn)O作OE⊥OF,分別交AD,CD于E,F(xiàn),若AE=6,CF=4,則EF=

【答案】2
【解析】解:∵四邊形ABCD是正方形, ∴∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,
∴∠AOD=90°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOE=∠DOF,
在△AOE和△DOF中,
∴△AOE≌△DOF(ASA),
∴AE=DF=6,
同理:DE=CF=4,
∴EF= = =2
所以答案是:2
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x= ,且經(jīng)過(guò)點(diǎn)(2,0),有下列說(shuō)法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2 . 上述說(shuō)法正確的是(
A.①②③④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡 旁一棵樹(shù) 的高度,他們先在點(diǎn) 處測(cè)得樹(shù)頂 的仰角為 ,然后在坡頂 測(cè)得樹(shù)頂 的仰角為 ,已知斜坡 的長(zhǎng)度為 , 的長(zhǎng)為 ,則樹(shù) 的高度是( )

A.
B.30
C.
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠C=90°,A=34°,D,E 分別為 AB,AC 上一點(diǎn),將△BCD,ADE 沿 CD,DE 翻折,點(diǎn) A,B 恰好重合于點(diǎn) P ,則∠ACP=_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著全國(guó)各地空氣出現(xiàn)嚴(yán)重污染,PM2.5屢屢爆表,我國(guó)多個(gè)城市發(fā)生霧霾天氣,越來(lái)越多的人開(kāi)始關(guān)注一個(gè)原本陌生的術(shù)語(yǔ)﹣PM2.5.某校九年級(jí)共有1000名學(xué)生,團(tuán)委準(zhǔn)備調(diào)查他們對(duì)“PM2.5”知識(shí)的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案: 方案一:調(diào)查九年級(jí)部分女生;
方案二:調(diào)查九年級(jí)部分男生;
方案三:到九年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請(qǐng)問(wèn)其中最具有代表性的一個(gè)方案是;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息,將其補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校九年級(jí)約有多少名學(xué)生比較了解“PM2.5”的知識(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P,Q分別是∠AOB的邊OA,OB上的點(diǎn).

(1)過(guò)點(diǎn)POB的垂線,垂足為H;

(2)過(guò)點(diǎn)QOA的垂線,交OA于點(diǎn)C,連接PQ;

(3)線段QC的長(zhǎng)度是點(diǎn)Q 的距離, 的長(zhǎng)度是點(diǎn)P到直線OB的距離,因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號(hào)連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD,∠1=2,∠3=4

1)求證:ADBE;

2)若∠B=3=22,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1, ),則點(diǎn)B的坐標(biāo)為(
A.(1﹣ +1)
B.(﹣ , +1)??
C.(﹣1, +1)
D.(﹣1,

查看答案和解析>>

同步練習(xí)冊(cè)答案