關(guān)于x的方程
1+x
1-x
=
a
b
(a≠b)的解是( 。
分析:方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.
解答:解:去分母得:b(1+x)=a(1-x),
去括號、移項(xiàng)合并得:(a+b)x=a-b,
∵a+b≠0,
解得:x=
a-b
a+b
,
經(jīng)檢驗(yàn)x=
a-b
a+b
是分式方程的解.
故選:A.
點(diǎn)評:此題考查了分式方程的解,以及解分式方程,需注意在任何時候都要考慮分母不為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2-(m-5)x-3m2=0的兩個根為x1,x2,且滿足|
x1
x2
|=
3
4

(1)求證:方程有兩個異號的實(shí)數(shù)根;
(2)求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2+2k-
5
4
=0 ①.
(1)求證:對于任意實(shí)數(shù)k,方程①總有兩個不相等的實(shí)數(shù)根;
(2)如果a是關(guān)于y的方程y2-(x1-k-
1
2
)y
+(x1-k)(x2-k)+
1
4
=0 ②的根,其中x1、x2為方程①的兩個實(shí)數(shù)根,且x1<x2,求代數(shù)式(
1
a
-
a
a+1
4
a+1
•(a2-1)
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川自貢卷)數(shù)學(xué)(解析版) 題型:填空題

(2013年四川自貢4分)已知關(guān)于x的方程,x1、x2是此方程的兩個實(shí)數(shù)根,現(xiàn)給出三個結(jié)論:①x1≠x2;②x1x2<ab;③.則正確結(jié)論的序號是    .(填上你認(rèn)為正確結(jié)論的所有序號)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的方程x2-2(k+1)x+k2+2k-
5
4
=0 ①.
(1)求證:對于任意實(shí)數(shù)k,方程①總有兩個不相等的實(shí)數(shù)根;
(2)如果a是關(guān)于y的方程y2-(x1-k-
1
2
)y
+(x1-k)(x2-k)+
1
4
=0 ②的根,其中x1、x2為方程①的兩個實(shí)數(shù)根,且x1<x2,求代數(shù)式(
1
a
-
a
a+1
4
a+1
•(a2-1)
的值.

查看答案和解析>>

同步練習(xí)冊答案