【題目】對于坐標平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).

(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點的點B,點B關(guān)于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.

【答案】
(1)

解:∵點P(2,3)經(jīng)1次斜平移后的點的坐標為(3,5),點A的坐標為(1,0),

∴點A經(jīng)1次平移后得到的點的坐標為(2,2),點A經(jīng)2次平移后得到的點的坐標(3,4);


(2)

解:①連接CM,如圖1:

由中心對稱可知,AM=BM,

由軸對稱可知:BM=CM,

∴AM=CM=BM,

∴∠MAC=∠ACM,∠MBC=∠MCB,

∵∠MAC+∠ACM+∠MBC+∠MCB=180°,

∴∠ACM+∠MCB=90°,

∴∠ACB=90°,

∴△ABC是直角三角形;

②延長BC交x軸于點E,過C點作CF⊥AE于點F,如圖2:

∵A(1,0),C(7,6),

∴AF=CF=6,

∴△ACF是等腰直角三角形,

由①得∠ACE=90°,

∴∠AEC=45°,

∴E點坐標為(13,0),

設(shè)直線BE的解析式為y=kx+b,

∵C,E點在直線上,

可得:

解得: ,

∴y=﹣x+13,

∵點B由點A經(jīng)n次斜平移得到,

∴點B(n+1,2n),由2n=﹣n﹣1+13,

解得:n=4,

∴B(5,8).


【解析】此題考查幾何變換問題,關(guān)鍵是根據(jù)中心和軸對稱的性質(zhì)和直角三角形的判定分析,同時根據(jù)待定系數(shù)法得出直線的解析式解答.(1)根據(jù)平移的性質(zhì)得出點A平移的坐標即可;(2)①連接CM,根據(jù)中心和軸對稱的性質(zhì)和直角三角形的判定解答即可。
②延長BC交x軸于點E,過C點作CF⊥AE于點F,根據(jù)待定系數(shù)法得出直線的解析式進而解答即可.
【考點精析】本題主要考查了確定一次函數(shù)的表達式和軸對稱的性質(zhì)的相關(guān)知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,設(shè)點P到原點O的距離為ρ,OP與x軸正方向的交角為a,則用[ρ,a]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[ ,45°].若點Q的極坐標為[4,120°],則點Q的平面坐標為(
A.(﹣2,﹣2
B.(2,﹣2
C.(﹣2 ,﹣2)
D.(﹣4,﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,把橫縱坐標都是整數(shù)的點稱為“整點”.

(1)直接寫出函數(shù)y= 圖象上的所有“整點”A1 , A2 , A3 , …的坐標;
(2)在(1)的所有整點中任取兩點,用樹狀圖或列表法求出這兩點關(guān)于原點對稱的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),D是OA的中點,點E在AB上,當(dāng)△CDE的周長最小時,點E的坐標為( 。

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙M與x軸相切于點A(8,0),與y軸分別交于點B(0,4)和點C(0,16),則圓心M到坐標原點O的距離是( 。

A.10
B.8
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2、O3 , …組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標是( 。

A.(2014,0)
B.(2015,﹣1)
C.(2015,1)
D.(2016,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)a、b滿足條件a>b>0時, =1表示焦點在x軸上的橢圓.若 =1表示焦點在x軸上的橢圓,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P(x,y)為不等式組 表示的平面區(qū)域M內(nèi)任意一點,若目標函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m=

查看答案和解析>>

同步練習(xí)冊答案