在下列圖形中,即是軸對稱圖形,又是中心對稱圖形的是( 。

 


A.           B.               C          .(D )

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(1)閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab
,
又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,當且僅當a、b滿足
 
時,a+b有最小值2
p

(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥2
ab
成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)y=
4
x
的圖象上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀:我們知道,在數(shù)軸上x=1表示一個點,而平面直角坐標系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標的點組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖①.觀察圖①可以得出:直線x=1與直線y=2x+1的交P的坐標(1,3)就是方程組
x=1
2x-y+1=0
的解,所以這個方程組的解是
x=1
y=3
在直角坐標系中,x≤1表示一個平面區(qū)域,即直線x=1以及它的左側(cè)部分,如圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它的右下方的部分,如圖③.
回答下列問題:
(1)在直角坐標系(圖④)中,用作圖象的方法求出方程組
x=-2
y=-2x+2
的解;
(2)用陰影部分表示不等式組
x≥-2
y≤-2x+2
y≥0
所圍成的平面區(qū)域,并求圍成區(qū)域的面積;
(3)現(xiàn)有一直角三角形(其中∠A=90°,AB=2,AC=4)小車沿x軸自左向右運動,當點A到達何位置時,小車被陰影部分擋住的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年河南省中考數(shù)學熱身卷(二)(解析版) 題型:解答題

(1)閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(小)值.
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥
根據(jù)上述內(nèi)容,回答下列問題:在a+b≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當且僅當a、b滿足______時,a+b有最小值
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀:我們知道,在數(shù)軸上x=1表示一個點,而平面直角坐標系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標的點組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖①.觀察圖①可以得出:直線x=1與直線y=2x+1的交P的坐標(1,3)就是方程組數(shù)學公式的解,所以這個方程組的解是數(shù)學公式在直角坐標系中,x≤1表示一個平面區(qū)域,即直線x=1以及它的左側(cè)部分,如圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它的右下方的部分,如圖③.
回答下列問題:
(1)在直角坐標系(圖④)中,用作圖象的方法求出方程組數(shù)學公式的解;
(2)用陰影部分表示不等式組數(shù)學公式所圍成的平面區(qū)域,并求圍成區(qū)域的面積;
(3)現(xiàn)有一直角三角形(其中∠A=90°,AB=2,AC=4)小車沿x軸自左向右運動,當點A到達何位置時,小車被陰影部分擋住的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年安徽省師大附中高一新生入學數(shù)學測試卷(解析版) 題型:解答題

閱讀:我們知道,在數(shù)軸上x=1表示一個點,而平面直角坐標系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標的點組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖①.觀察圖①可以得出:直線x=1與直線y=2x+1的交P的坐標(1,3)就是方程組的解,所以這個方程組的解是在直角坐標系中,x≤1表示一個平面區(qū)域,即直線x=1以及它的左側(cè)部分,如圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它的右下方的部分,如圖③.
回答下列問題:
(1)在直角坐標系(圖④)中,用作圖象的方法求出方程組的解;
(2)用陰影部分表示不等式組所圍成的平面區(qū)域,并求圍成區(qū)域的面積;
(3)現(xiàn)有一直角三角形(其中∠A=90°,AB=2,AC=4)小車沿x軸自左向右運動,當點A到達何位置時,小車被陰影部分擋住的面積最大?

查看答案和解析>>

同步練習冊答案