已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點的切線PD與直線AB交于P點,則∠ADP的度數(shù)為( )

A.40°
B.45°
C.50°
D.65°
【答案】分析:連接BD,由圓內(nèi)接四邊形的對角互補,AB是直徑知∠DAB=180°-∠C=50°,∠ADB=90°,所以可求∠ABD=40°;再根據(jù)PD是切線,弦切角定理知,∠ADP=∠B=40°.
解答:解:連接BD,
∵∠DAB=180°-∠C=50°,AB是直徑,
∴∠ADB=90°,∠ABD=90°-∠DAB=40°,
∵PD是切線,
∴∠ADP=∠B=40°.
故選A.
點評:本題利用了圓內(nèi)接四邊形的性質(zhì),直徑對圓周角等于直角,弦切角定理,弦切角等于它所夾的弧對的圓周角求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O的內(nèi)接等邊三角形ABC中,經(jīng)過點A的弦與BC和弧
BC
分別相交于點D和P,連接PB、PC.
(1)寫出圖中所有的相似三角形:
 
;
(2)求證:PA2=BC2+PB•PC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點的切線PD與直線AB交于P點,則∠ADP的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在山腳的C處測得山頂A的仰角為45°,沿著坡度為30°的斜坡前進400米到D處(即∠DCB=30°,CD=400米),測得A的仰角為60°,求山的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年初中數(shù)學湘教版九年級上冊第4章練習卷(解析版) 題型:解答題

已知:如圖,在山腳的處測得山頂的仰角為,沿著坡角為的斜坡前進米到達處(即∠,米),測得的仰角為,求山的高度

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年人教版八年級上全等三角形3練習卷(解析版) 題型:解答題

已知:如圖E在△ABC的邊AC上,且∠AEB=∠ABC。

(1)求證:∠ABE=∠C;

(2)若∠BAE的平分線AF交BE于F,F(xiàn)D∥BC交AC于D,設AB=5,AC=8,求DC的長。

 

查看答案和解析>>

同步練習冊答案