【題目】已知a、b是一元二次方程x2﹣2x﹣1=0的兩個根,求a2﹣a+b+3ab的值.
科目:初中數(shù)學 來源: 題型:
【題目】(3z-y)2 等于( )
A. 9z2-y+y2 B. 9z2-yz+y2 C. 9z2-6yz+y2 D. 3z2-6yz+y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點M是AC的中點,以AB為直徑作⊙O分別交AC,BM于點D,E.
(1)求證:MD=ME
(2)填空:①若AB=6,當AD=2DM時,DE=___________;
②連接OD,OE,當∠A的度數(shù)為____________時,四邊形ODME是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解實際問題
華聯(lián)商廈進貨員在廣州發(fā)現(xiàn)一種飾品,預計能暢銷市場,就用8000元購進所有飾品,每件按58元很快賣完. 由于銷路很好,又在上海用13200元購進,這次比在廣州多進了100件,單價比廣州貴了10%,但商廈仍按原售價銷售,最后剩下的15件按八折銷售,很快售完,問該商廈這兩批飾品生意共賺了多少 ?(不考慮其它因素)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
(1)特例探究:如圖②,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
(2)歸納證明:如圖③,點B,C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC. 求證:△ABE≌△CAF;
(3)拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.
(1)畫出△ABC向右平移4個單位后得到的△A1B1C1;
(2)圖中AC與A1C1的關系是: _____________.
(3)畫出△ABC的AB邊上的高CD;垂足是D;
(4)圖中△ABC的面積是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列不等式變形中,錯誤的是( )
A. 若 a≤b,則 a+c≤b+cB. 若 a+c≤b+c,則 a≤b
C. 若 a≤b,則 ac2≤bc2D. 若 ac2≤bc2,則 a≤b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com